) Vi)uE a] uaoE h aeZé [Yv]z¡ h aeu1 ¢ I [õozZíuE p|E...

Post on 01-Jul-2019

215 views 0 download

transcript

  • Journal of the Korean Society of Propulsion Engineers Vol. 19, No. 2, pp. 29-37, 2015 29

    Nomenclature

    PDE : pulse detonation engine

    GFM : ghost fluid method

    Research Paper DOI: http://dx.doi.org/10.6108/KSPE.2015.19.2.029

    -

    a a a, *

    Numerical Analysis of Detonation of Kerosene-Air Mixture

    and Solid Structure

    Younghun Lee a Min-cheol Gwak a Jai-ick Yoh a, *

    a Department of Mechanical and Aerospace Engineering, Seoul National University, Korea* Corresponding author. E-mail: jjyoh@snu.ac.kr

    ABSTRACT

    This paper presents a numerical investigation on detonation of a kerosene-air mixture in the copper

    tube and the structural response associated with combustion instability in liquid rocket engine. A

    single step Arrehnius rate law and Johnson-Cook strength model are used to describe the chemical

    reaction of kerosene-air mixture detonation and the plastic deformation of the copper tube. The

    changes of flow field and tube stress which are induced by plastic deformation, are investigated on

    the different tube thicknesses and nozzle configurations.

    .

    1 ,

    Johnson-Cook .

    .

    Key Words: Kerosene(), Detonation(), Multi-material(), Liquid Rocket Engine

    (), Plastic Deformation()

    Received 24 December 2014 / Revised 8 March 2015 / Accepted 13 March 2015Copyright The Korean Society of Propulsion EngineerspISSN 1226-6027 / eISSN 2288-4548[ 2014 (2014. 12. 17-19,

    ) .]

    This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org /licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 30

    C-J : Champman-Jouguet

    e : total energy density

    p : pressure

    R : gas constant

    u : velocity

    Yi : mass fraction of the reactant mixture

    : strain

    : cauchy stress tensor

    : deviatoric stress tensor

    : level

    r : r-axis in 2-D cylindrical domain

    z : z-axis in 2-D cylindrical domain

    1.

    ,

    .

    [1].

    ,

    [2].

    ,

    PDE(Pulse Detonation Engine)

    .

    PDE ,

    .

    ,

    [3-6].

    ,

    [9]

    .

    , PDE

    -

    ,

    .

    1

    [4,8]

    , -

    GFM(Ghost Fluid Method)

    ,

    .

    .

    PDE

    ,

    .

    2.

    2.1

    -

    433 K

    ,

    . -

    1 2

    , Eq. 1-5 2

    .

    (1)

  • 19 2 2015. 4.-

    31

    (2)

    (3)

    (4)

    (5)

    , = 0, = 1 , -

    , = 1, = 0

    , .

    , ur, uz, P, e, Yi , r z

    , , ,

    .

    1

    .

    Eq. 6 1

    . ,

    [6].

    exp (6)

    ,

    (Hook)

    Eq. 7

    .

    (7-1)

    (7-2)

    (7-3)

    , ij, G, , DijP (spin

    tensor), , ,

    . = 1 ( = 0) (

    ) [7].

    3 Conves

    ENO scheme, 3 R-K

    method, 2 FDM

    .

    2.2

    ,

    . ,

    Eq. 8 9 Mie-Grueisen

    ,

    Johnson-Cook [7].

    if

    (8)

    ln

    (9)

  • 32

    , 0, a0, s, c0, A, B, n

    Tm, T0, p, 0 ,

    , , .

    Johnson-Cook 1

    , 1

    [7].

    2.3

    Eulerian

    , hybrid particle level set

    . Eq. 10 level set

    , =0

  • 19 2 2015. 4.-

    33

    Fig. 2 Schematic of a 2D problem setup for tube.

    Fig. 2

    (4 mm X 30 mm) .

    - 2

    mm X 30 mm

    C-J 2

    .

    (: 0.12 mm, : 0.2

    mm)

    .

    , , ,

    , , ,

    (Xboundary=0.95X1+0.05X0) .

    X1

    36 bar

    X0 1 bar[6].

    - ,

    1

    , Mie-Gruneisen EOS,

    Johnson-Cook

    [7] .

    . Fig.

    3 1/15, 1/50, 1/100 mm

    . 1/50 mm

    Fig. 3 Pressure profiles of three different mesh sizes

    (1/15, 1/50, and 1/100 mm).

    1/100 mm von Neumann spike C-J

    1/50 mm

    . 1/50 mm 1

    - (0.1 ~0.2

    mm) 5 ~ 10

    , 0.2

    mm 10 [4]

    .

    3.3

    ,

    0.2 mm

    . Fig. 4

    .

    2 s

    2 s

    .

    18 s 2 s

    . 20 mm

    .

    ,

  • 34

    Fig. 4 Pressure histories of a rigid tube(2D cylindrical

    model).

    ,

    .

    C-J 2

    (3.5 MPa) .

    von Neumann

    spike 2.8 MPa .

    Fig. 5

    .

    .

    ,

    . ,

    0.12 mm

    0.2 mm

    .

    Fig. 6 0.12 mm

    . , Fig. 6(a)

    Fig. 5 Snapshots of density [unit: kg/m3] in a rigid

    tube, where arrows indicate the propagation

    direction.

    Fig. 6 Snapshots of density [unit: kg/m3] in a tube.

  • 19 2 2015. 4.-

    35

    Fig. 7 Schematic of a 2D problem setup for nozzle.

    Fig. 8 Snapshots of density [unit: kg/m3] in gas

    phase and r-axis stress [unit: Pa] in solid

    phase.

    .

    Fig.

    6(b)

    .

    0.85

    Fig. 9 r-axis stress [unit: MPa] at solid region.

    .

    rigid ,

    .

    3.4

    .

    Fig. 7 .

    0.2

    mm ,

    45 60

    2 mm, 1.5 mm,

    2.5 mm .

    Fig. 8 .

    ,

    .

    ,

    Fig. 9 .

  • 36

    4.

    -

    .

    -

    ,

    hybrid particle level-set

    GFM .

    ,

    ,

    .

    PDE

    .

    .

    -

    ,

    .

    2015 BK21

    (No.

    2013073861) ,

    .

    References

    1. Harrje, D.J. and Reardon, F.H.,Liquid Propellant Rocket Instability," NASA

    SP-194, 1972.

    2. Ducruix, S., Schuller, T., Durox, D. and

    Candel, S., Combustion Dynamics and

    Instabilities: Elementary Coupling and

    Driving Mechanisms, Journal of Propulsion

    and Power, Vol. 19, No. 5, pp. 722-734,

    2003.

    3. Fuhua, M., Choi, J.Y. and Yang, V.,

    Thrust Chamber Dynamics and Propulsive

    Performance of Single-Tube Pulse

    Detonation Engines, Journal of Propulsion

    and Power, Vol. 21, No. 3, pp. 512-526,

    2005.

    4. Huang, Y., Tang, H., Li, J. and Zhang, C.,

    Studies of DDT Enhancement Approaches

    for Kerosene-Fueled Small-scale Pulse

    Detonation Engines Applications, Shock

    waves, Vol. 22, No. 1, pp. 615-625, 2012.

    5. Kindracki, J., Analysis of the Experimental

    Results of the Initiation of Detonation in S

    hort Tubes with Kerosene-Oxidizer

    Mixtures, Journal of Loss Prevention in the

    Process Industries, Vol. 26, No. 1, pp.

    1515-1523, 2013.

    6. Gamezo, V.N., Desbordes, D. and Oran,

    E.S., Two-Dimensional Reactive Flow

    Dynamics in Cellular Detonation Waves,

    Shock Waves, Vol. 9, No. 1, pp. 11-17, 1999.

    7. Kim, K. and Yoh, J.J., A Particle Level-se

    t Based Eulerian Method for Multi-Material

    Detonation Simulation of High Explosive

    and Metal Confinements, Proceedings of the

    Combustion Institute, Vol. 34, No. 1, pp.

    2025-2033, 2013.

    8. Shen H., Wang G., Liu K.X. and Zhang

    D.L., Numerical Simulation of

    Liquid-Fueled Detonations by an

    Eulerian-Lagrangian Model, International

    Journal of Nonlinear Science and Numerical

  • 19 2 2015. 4.-

    37

    Simulation, Vol. 13, No. 1, pp. 177-188,

    2012.

    9. Beltman, W.M. and Shepherd, J.E., Linear

    Elastic Response of Tubes to Internal

    Detonation Loading, Journal of Sound and

    Vibration, Vol. 252, Issue 4, pp. 617-655,

    2002.

    - ABSTRACT1. 2. 3. 4. References