041003Jacksonville ASC04 shortcourse V7 M. Nielsen, I. Chuang, Quantum Computation and Quantum...

Post on 29-May-2018

217 views 0 download

transcript

Superconducting QubitsAndreas Wallraff

Department of Applied Physics, Yale University

NIST

ChalmersNEC

TU Delft

with supporting material from: M. Devoret, D. Esteve, S. Girvin, J. Mooij, R. Schoelkopf, L. Vandersypen

Motivation

M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge, 2000).

• build scalable macroscopic quantum circuits

• control open quantum systems

• investigate quantum measurement process

• learn about decoherence in solid state systems

• build a quantum computer

• solve computationally hard problems

current goals for solid state implementations:

long term goals:

Schematic of a Generic Quantum Processor

M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge, 2000).

01

01

01

2 level systems:qubits

2 qubit gates:controlled

interactions

U1U1single qubit

gates

0

readout

1?

with excellent gate, readout, … accuracy for Q.C.

Outline

• how to make qubits from superconducting circuits

• realizations of superconducting qubits

• controlling qubits

• coherence/decoherence

• qubit readouts and measurements

• coupled qubits

• conclusions

A Generic Qubit

D. P. DiVincenzo, arXiv:quant-ph/0002077 (2000)

• existence of quantum two level system (a qubit)

• qubit initialization (reset)

• qubit coherence (no dissipation, no dephasing)

• qubit control (gate operations)

• qubit readout

DiVincenzo criteria:

two-level quantum system (a spin ½)

Building Qubits with Integrated Circuits

requirements for quantum circuits:

• low dissipation

• non-linear (non-dissipative elements)

• low (thermal) noise

a solution:

• use superconductors

• use Josephson tunnel junctions

• operate at low temperaturesU(t) voltage source

inductor

capacitor

resistor

voltmeters

nonlinear element

LC Oscillator as a Quantum Circuit

+qφ

-q

φ

E

[ ], iqφ = h

1 GHz ~ 50 mK

problem I: equally spaced energy levels (linearity)

low temperature required:hamiltonian

momentumposition

Dissipation in an LC Oscillator

impedance

quality factor

internal losses:conductor, dielectric

external losses:radiation, coupling

total losses

excited state decay rate

problem II: avoid internal and external dissipation

A Superconducting Nonlinear Element

M. Tinkham, Introduction to Superconductivity (Krieger, Malabar, 1985).

Josephson junction

The Josephson Junction

a nonlinear inductor without dissipation

nonlinear current flux relation:

gauge inv. phase difference:

nonlinear Josephson inductance:

voltage:

Josephson energy:

Building Blocks for Qubits

Eartificial

atom

~ 0.5 K (10 GHz)

all ingredients available: macroscopic artificial atoms:

Superconducting Qubits

NISTChalmersNEC

TU Delft

flux phasecharge

Charge Qubits

Cooper pair box

electrostatic energy Josephson energy

charging energy

Josepshon energy

gate charge

V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H. Devoret, Physica Scripta T76, 165 (1998).

Tunable Charge Qubits

split Cooper pair box

SQUID modulation of Josephson energy

J. Clarke, Proc. IEEE 77, 1208 (1989)

Cooper Pair Box Energy Levels

Two-State Approximation

K. Lehnert et al. PRL. 90, 027002 (2003).

Nakamura, Pashkin, Tsai et al. Nature 398, 421, 425 (1999,2003, 2003)

Control of Charge Qubit

effective hamiltonian

energy splitting

control parameter

gate charge

Control of Charge Qubit

effective hamiltonian

energy splitting

control parameter

gate charge

X

Z

Y

Single Qubit Control

Z

1

0

X

Y

t

x,y rotations by microwave pulses

1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0

- 5 0

0

5 0

1 6 G H zπ p u ls e

Mic

row

ave

outp

ut v

olta

ge (m

V)

t im e ( n s )

z rotations by adiabatic pulses

Bloch sphere representation of single qubit manipulation

Flux Qubits

A. Barone and G. Paterno, (Wiley, New York, 1992)

charging energy

inductive energy

Josephson energy

kinetic energy potential energy

RF-SQUID Potential

parabolic potentialwith cosine corrugation

energy level splitting at bias flux dependence

Control of Flux Qubits

effective hamiltonian

splitting energy

control parameter

flux frustration

Variation of the Flux Qubit

J. E. Mooij, T. P. Orlando, ... , C. H. van der Wal and S. Lloyd, Science 285, 1036 (1999)C. H. van der Wal, A. C. J. ter Haar, ... , S. Loyd and J. E. Mooij, Science 290, 773 (2000).

persistent-current quantum bit:flux qubit with three junctions, small geometric loop inductance

H = hσz + tσxwith h=(Φ/Φo-0.5) ΦoIp

0

-1

0

1

0.5

↑Icirc

↑E

Φ/Φo→

2t

+Ip

-Ip

0

Φk

i

Phase Qubits

J. M. Martinis, M. H. Devoret and J. Clarke, Phys. Rev. B 35, 4682 (1987)

current biased junction

kinetic energy potential energy

charging energy

Josephson energy

bias current

Potential of Current Biased Junction

particle in a washboard potential

potential

J. M. Martinis, M. H. Devoret and J. Clarke, Phys. Rev. B 35, 4682 (1987)

Energy level quantization

cubic potential near I = I0

oscillation frequency

barrier height

J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89, 117901 (2002)

use eigenstates as basis states of qubit

Control of Phase Qubits

M. Steffen, J. Martinis and I. L. Chuang, Phys. Rev. B 68, 224518 (2003).

effective hamiltonian

‘splitting’ energy

control parameter

bias current

operations:

relaxation: transverse fluctuations at qubit transition frequency

Decoherence: Relaxation and Dephasing

dephasing: parallel fluctuations (in qubit level sep.) at low frequencies

1

life time coherence time

A. Abragam, Principles of Nuclear Magnetic Resonance (Oxford University Press, Oxford, 1985)

Measuring Relaxation

x

y

z

π/2pulse

πpulse

0

1tw

wait measure

0 1 2 4 5 6 730

35

40

45

50

switc

hing

pro

babi

lity

(%)

time tw (µs)

Relaxation Measurement

Exponential fit:T1 = 1.84 µs

Q1 ~ 90 000

tw

D. Vion, A. Aassime, A. Cottet, ... , D. Esteve, and M.H. Devoret, Science 296, 286 (2002).

~ ex

cite

d st

ate

occu

patio

n pr

obab

ility

(%)

time

prepa-ration

π/2pulse

freeevolution

π/2pulse

measure-ment

Ramsey fringe experiment

Measuring Quantum Coherence (I)

determine coherence time T2

time

prepa-ration

π/2pulse

freeevolution

π/2pulse

measure-ment

Ramsey fringe experiment

Measuring Quantum Coherence (II)

determine coherence time T2

Measurement of Ramsey Fringes

0.0 0.1 0.2 0.3 0.4 0.5 0.6

30

35

40

45

sw

itchi

ng p

roba

bilit

y (%

)

time between pulses ∆t (µs)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

30

35

40

45

sw

itchi

ng p

roba

bilit

y (%

)

time between pulses ∆t (µs)

νRF = 16409.50 MHz

0.0 0.1 0.2 0.3 0.4 0.5 0.6

30

35

40

45

sw

itchi

ng p

roba

bilit

y (%

)

time between pulses ∆t (µs)

Qϕ ~ 25000

∆t

f-f01=20.6 MHz

D. Vion, A. Aassime, A. Cottet, ... , D. Esteve, and M.H. Devoret, Science 296, 286 (2002).

Qubit Readouts

- negligible coupling between readout and qubit in OFF state

- no dephasing, no relaxation

- strong coupling in ON state

- minimal relaxation (QND)

- high fidelity

01 0

readout

1?

back action

Readouts for Superconducting Qubits

NIST

ChalmersNEC

TU Delft

Schoelkopf et al, Yale

fluxphase

dispersive charge

charge-phase

charge

Phase Qubit Direct Tunneling Readout

|0>|1>

pump&probe: ω21 microwave pulse current pulse (lower barrier)

<V> = 0 <V> = 1 mV

phase

pote

ntia

l

|2>

tunneling rates

advantages: on-chip built-in amplification

disadvantages: - on-chip dissipation- quasi particle generation- decoherence

state measurement : |0> : zero voltage|1> : voltage

Phase Qubit: Rabi Oscillations

J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89, 117901 (2002)

ω10 ω31

tr

Phase Qubit SQUID Readout

R. W. Simmonds, K. M. Lang, ... and J. M. Martinis, Phys. Rev. Lett. 93, 077003 (2004)

tunneling readout with on-chip DC-SQUID amplifier

U(δ)

~50

00 s

tate

s

“0”

“1”

… fastdecay

1 Φ0

SQUID flux

Sw

itchi

ngcu

rren

t10 µΑ

0- sample and hold readout- no quasi particles

Phase Qubit: Rabi oscillations

R. W. Simmonds, K. M. Lang, ... and J. M. Martinis, Phys. Rev. Lett. 93, 077003 (2004)

Is

time

qubit cycle

Qubit Op Meas Amp Reset flux

Measure p1

large visibility

Cooper Pair Box Readout: Quantronium

D. Vion, A. Aassime, A. Cottet, ... , D. Esteve, and M.H. Devoret, Science 296, 286 (2002).

- high impedance capacitively coupled write and control port- low impedance inductive readout

I0 Ib

V=0or

V≠0

U

Ramsey oscillations in the Quantronium

D. Vion, A. Aassime, A. Cottet, ... , D. Esteve, and M.H. Devoret, Science 296, 286 (2002).

- operation at optimal point- long coherence time

Flux Qubit with Bulit-In Readout

I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299, 1869 (2003).

- inductively coupled hysteretic DC-SQUID for readout- high impedance inductive write and control port

Rabi Oscillations with Flux Qubit

I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299, 1869 (2003).

Ramsey Fringes with Flux Qubit

I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299, 1869 (2003).

Dispersive Read-Out of Charge Qubit

A. Wallraff, D. Schuster, A. Blais, ..., S. M. Girvin and R. J. Schoelkopf, Nature 431, 162 (2004).

- dispersive measurement of qubit susceptibility- no on-chip dissipation- quantum non-demolition measurement (QND)- measurement back-action understood

The CPB: State Dependent Capacitance

A Cooper Pair Box in a Cavity

Ramsey Fringes with Circuit QED Readout

A. Wallraff, D. Schuster, A. Blais, ..., S. M. Girvin and R. J. Schoelkopf, unpublished (2004).

- long life time T1 ~ 5 µs- long coherence time

Realizations of Coupled Qubits

J. B. Majer, F. G. Paauw, A. C. J. ter Haar, C. P. J. Harmans, J. E. Mooij, cond-mat/0308192.Pashkin Yu. A., … , Nakamura Y., Averin D. V., and Tsai J. S., Nature 421, 823-826 (2003).

Coupled Qubits

Ising coupling

1

0 0

1

π

1 0

00

01

10

11

00

11

10

01

CNOT

control bit (2)target bit (1)

2 Qubit Gates: Controlled-NOT

if spin B is ↑

YA90 XA

-90Delay1/2JAB

if spin B is ↓

Before AfterA B A B↑ ↑ ↑ ↑↑ ↓ ↓ ↓↓ ↑ ↓ ↑↓ ↓ ↑ ↓

” flip A if B ↓”

xy

z

xy

z

xy

z

xy

z

xy

z

xy

z

xy

z

xy

z

| 0 ⟩

| 1 ⟩

| 0 ⟩ + i | 1 ⟩√2

| 0 ⟩ + | 1 ⟩√2

time

Realization of Controlled-NOT

T. Yamamoto, Yu. A. Pashkin, O. Astaflev, Y. Nakamura, J. S. Tsai Nature 425, 941 (2003)

Conclusions

• superconducting qubit architectures have been realized

• different readout strategies have been tested

• qubit initialization, single qubit control has been demonstrated

• first two-qubit gates have been implemented

• realize high fidelity, single-shot qubit readout

• control decoherence (increase T1 and T2)

• understand limitations imposed by circuit materials and fabrication

• integrate multi-qubit circuits

challenges:

achievements:

NIST

ChalmersNEC

TU Delft

many thanks to:

M. Devoret, D. Esteve, S. Girvin, J. Mooij, R. Schoelkopf, L. Vandersypen