1. 2 CHAP 1 Preliminary Concepts and Linear Finite Elements Instructor: Nam-Ho Kim...

Post on 18-Dec-2015

237 views 5 download

transcript

1

2

CHAP 1

Preliminary Concepts and

Linear Finite Elements

Instructor: Nam-Ho Kim (nkim@ufl.edu)Web: http://www.mae.ufl.edu/nkim/

3

Table of Contents

1.1. INTRODUCTION

1.2. VECTOR AND TENSOR CALCULUS

1.3. STRESS AND STRAIN

1.4. MECHANICS OF CONTINUOUS BODIES

1.5. FINITE ELEMENT METHODS

4

VECTOR AND TENSOR CALCULUS

1.2

5

Vector and Tensor

• Vector: Collection of scalars

• Cartesian vector: Euclidean vector defined using Cartesian coordinates– 2D, 3D Cartesian vectors

– Using basis vectors: e1 = {1, 0, 0}T, e2 = {0, 1, 0}T, e3 = {0, 0, 1}T

11

22

3

uu

, or uu

u

u u

1 1 2 2 3 3u u uu e e e

6

Index Notation and Summation Rule

• Index notation: Any vector or matrix can be expressed in terms of its indices

• Einstein summation convention

– In this case, k is a dummy variable (can be j or i)

– The same index cannot appear more than twice

• Basis representation of a vector

– Let ek be the basis of vector space V

– Then, any vector in V can be represented by

3

k k k kk 1

a b a b

N

k k k kk 1

w ww e e

1 11 12 13

i 2 ij 21 22 23

3 31 32 33

v A A A

[v] v [A ] A A A

v A A A

v A

7

Index Notation and Summation Rule cont.

• Examples– Matrix multiplication:

– Trace operator:

– Dot product:

– Cross product:

– Contraction: double dot product

j k j k ijk j k iuv ( ) e uvu v e e e

ijk

0 unless i, j,k are distinct

e 1 if (i, j,k) is an evenpermutation

1 if (i, j,k) is anodd permutation

3 3

ij ij ij iji 1 j 1

J : A B A BA B

Permutation symbol

ij ik kj

11 22 33 kk

1 1 2 2 3 3 k k

C A B

tr( ) A A A A

uv u v u v u v

C A B

A

u v

8

Cartesian Vector

• Cartesian Vectors

• Dot product

– Kronecker delta function

– Equivalent to change index j to i, or vice versa

• How to obtain Cartesian components of a vector

1 1 2 2 3 3 i i

j j

u u u u

v

u e e e e

v e

i i j j i j i j i j ij i i(u ) (v ) uv ( ) uv uvu v e e e e

ij

1 ifi j

0 ifi j

X1

X2

X3

e1 e2

e3

uv

i i j j j ij i(v ) v ve v e e Projection

9

Direct tensor notation Tensor component notation Matrix notation

Notation Used Here

a b i iab Ta b

A a b ij i jA ab TA ab

b A a i ij jb A a b Aa

b a A j i ijb aA T Tb a A

10

Tensor and Rank

• Tensor– A tensor is an extension of scalar, vector, and matrix

(multidimensional array in a given basis)

– A tensor is independent of any chosen frame of reference

– Tensor field: a tensor-valued function associated with each point in geometric space

• Rank of Tensor– No. of indices required to write down the components of

tensor

– Scalar (rank 0), vector (rank 1), matrix (rank 2), etc

– Every tensor can be expressed as a linear combination of rank 1 tensors

– Rank 1 tensor v: vi

– Rank 2 tensor A: Aij

– Rank 4 tensor C: Cijkl

11

Tensor Operations

• Basic rules for tensors

• Tensor (dyadic) product: increase rank

i j i j ij i juv A uvA u v e e

( ) ( )

( ) ( )

( )( ) ( )

u v w u v w

w u v v w u

u v w x v wu x u v v u

( ) ( )

( )

( ) ( ) ( )

TS R T SR

T S R TS TR

TS T S T S

1T T1 T

Different notations

TS T S

Identity tensor

ij[ ]1

12

Tensor Operations cont.

• Symmetric and skew tensors

– Symmetric

– Skew

– Every tensor can be uniquely decomposed by symmetric and skew tensors

– Note: W has zero diagonal components and Wij = - Wji

• Properties – Let A be a symmetric tensor

T12

T12

( )

( )

S T T

W T T

T

T

S S

W W

T S W

: 0

: :

A W

A T A S

13

Example

• Displacement gradient can be considered a tensor (rank 2)

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

u u u

X X X

u u u

X X X

u u u

X X X

uu

X

31 1 2 1

1 2 1 3 1

31 2 2 2

2 1 2 3 2

3 3 31 2

3 1 3 2 3

uu u u u1 1X 2 X X 2 X X

uu u u u1 12 X X X 2 X X

u u uu u1 12 X X 2 X X X

( ) ( )

sym( ) ( ) ( )

( ) ( )

u

31 2 1

2 1 3 1

31 2 2

2 1 3 2

3 31 2

3 1 3 2

uu u u1 12 X X 2 X X

uu u u1 12 X X 2 X X

u uu u1 12 X X 2 X X

0 ( ) ( )

skew( ) ( ) 0 ( )

( ) ( ) 0

u

Strain tensor

Rotation tensor

14

Contraction and Trace

• Contraction of rank-2 tensors

– contraction operator reduces four ranks from the sum of ranks of two tensors

• magnitude (or, norm) of a rank-2 tensor

• Constitutive relation between stress and strain

• Trace: part of contraction

– In tensor notation

ij ij 11 11 12 12 32 32 33 33: a b a b a b a b a ba b

:a a a

ij ijkl kl: , DD

ii 11 22 33tr( ) A A A AA

tr( ) : :A A 1 1 A

15

Orthogonal Tensor

• In two different coord.

• Direction cosines

• Change basis

* *i i j ju uu e e

*i j ije e *

i ij je e

* *j j i i

*i ij j

u u

u

u e e

e

*j ij iu u

T *u u

e1*

e2*

e3*

e1

e2

e3

We can also show

* *j ij ie e u u

T * T T( ) ( )u u u u

T T det( ) 11Orthogonal tensor

1 T

* T *ij ik kl j l, T TT T

Rank-2 tensor transformation

16

Permutation

• The permutation symbol has three indices, but it is not a tensor

• the permutation is zero when any of two indices have the same value

• Identity

• vector product

ijk

1 ifi jk are an evenpermutation : 123, 231, 312

e 1 ifi jk are anodd permutation : 132, 213, 321

0 otherwise

ijk lmk il jm im j le e

i ijk j ke uvu v e

17

Dual Vector

• For any skew tensor W and a vector u

– Wu and u are orthogonal

• Let

• Then,

T 0u Wu u W u u Wu

ij ijk kW e w

12 13 23

12 23 13

13 23 12

0 W W W

W 0 W W

W W 0 W

W w

ij j ijk k j ikj k jW u e w u e w u

Wu w u

Dual vector of skew tensor W

1i ijk jk2

w e W

18

Vector and Tensor Calculus

• Gradient

– Gradient is considered a vector

– We will often use a simplified notation:

• Laplace operator

• Gradient of a scalar field f(X): vector

( )

X

iiX

e

X

,i

i jj

vv

X

2i j

i j j jX X X X

e e

( ) iiX

X e

19

Vector and Tensor Calculus

• Gradient of a Tensor Field (increase rank by 1)

• Divergence (decrease rank by 1)

– Ex)

• Curl

ji j j i j

i iX X

e e e e

ii j j

i iX X

e e

,jk j k e

,i ijk k je v v e

20

Integral Theorems

• Divergence Theorem

• Gradient Theorem

• Stokes Theorem

• Reynolds Transport Theorem

d d A n A

d d A n A

( )d dc

c n v r v

G

c

r

dd d ( ) d

dt t

A

A n v A

n: unit outward normal vector

21

Integration-by-Parts

• u(x) and v(x) are continuously differentiable functions• 1D

• 2D, 3D

• For a vector field v(x)

• Green’s identity

b bb

aa au(x)v(x)dx u(x)v(x) u(x)v(x)dx

ii i

u vvd uvn d u d

x x

u d u( )d u d v v n v

2u vd u v d u vd n

22

Example: Divergence Theorem

• S: unit sphere (x2 + y2 + z2 = 1), F = 2xi + y2j + z2k

• Integrate dS

SF n

SdS d

2 (1 y z)d

2 d 2 yd 2 zd

2 d

83

F n F

23

STRESS AND STRAIN1.3

24

Surface Traction (Stress)

• Surface traction (Stress)– The entire body is in equilibrium with

external forces (f1 ~ f6)

– The imaginary cut body is in equilibrium due to external forces (f1, f2, f3) and internal forces

– Internal force acting at a point Pon a plane whose unit normal is n:

– The surface traction depends on the unit normal direction n.

– Surface traction will change as n changes.

– unit = force per unit area (pressure)

f1

f2

f3

f4

f6

f5

y

z

F

n

f1

f2

f3

P A

x

( )

A 0lim

A

n F

t

( )1 1 2 2 3 3t t t nt e e e

25

Cartesian Stress Components

• Surface traction changes according to the direction of the surface.

• Impossible to store stress information for all directions.

• Let’s store surface traction parallel to the three coordinate directions.

• Surface traction in other directions can be calculated from them.

• Consider the x-face of an infinitesimal cube

s11 s12

s13

x y

z

Dx

Dy

DzDF

(x) (x) (x)(x)1 2 31 2 3t t t t e e e+

(x)11 1 12 2 13 3 t e e e+

Normalstress

Shearstress

26

Stress Tensor– First index is the face and the second index is its direction– When two indices are the same, normal stress, otherwise

shear stress.– Continuation for other surfaces.– Total nine components– Same stress components are defined for the negative planes.

• Rank-2 Stress Tensor

• Sign convention

s11 s22

s33

s12

s13

s21

s23

s31s32

x y

z

Dx

Dy

Dz

ij i j e e

11 x

12 y

sgn( ) sgn( ) sgn( F )

sgn( ) sgn( ) sgn( F )

n

n

27

Symmetry of Stress Tensor– Stress tensor should be symmetric

9 components 6 components– Equilibrium of the angular moment

– Similarly for all three directions:

– Let’s use vector notation:

12

21

x

y

12

21

O

l

l

A B

C D

12 21

12 21

M l( ) 0

11 12 13

ij 12 22 23

13 23 33

[ ]

11

22

33

12

23

13

{ }

12 21 23 32 13 31, ,

Cartesian componentsof stress tensor

28

Stress in Arbitrary Plane– If Cartesian stress components are known, it is

possible to determine the surface traction acting on any plane.

– Consider a plane whose normal is n.– Surface area (ABC = A)

– The surface traction

– Force balance

3 1 2PAB An ; PBC An ; PAC An

x

y

z

B

A

C

s33s31

s32

s22

s23

s21

s11

s13

s12

t(n)

n

P( ) ( ) ( )( )

1 2 31 2 3t t t n n nnt e e e

( )1 11 1 21 2 31 31F t A An An An 0 n

( )11 1 21 2 31 31t n n n n

29

Cauchy’s Lemma

• All three-directions

• Tensor notation

– stress tensor; completely characterize the state of stress at a point

• Cauchy’s Lemma– the surface tractions acting on opposite sides of the same

surface are equal in magnitude and opposite in direction

( )12 1 22 2 32 32

( )13 1 23 2 33 33

t n n n

t n n n

n

n

( )11 1 21 2 31 31t n n n n

( ) ( ) n nt n t n

( ) ( )n nt t

30

Projected Stresses

• Normal stress

• Shear stress

• Principal stresses

• Mean stress (hydrostatic pressure)

• Stress deviator

ij i j( ) nn nn t n n n2 2( ) ( ) ( ) ( ) n nn t n n t n n

1 2 3/ / , , nt n

m dev

11 m 12 13

12 11 m 23

13 23 11 m

:

s 1 I

s

Which stresses are frame indifferent?

m 11 22 331 1

p tr( ) ( )3 3

1dev 3 I I 1 1

1ijkl ik j l il jk3

I ( ) Rank-4 identity tensor

Rank-4 deviatoric identity tensor

31

Strain

• Strain: a measure of deformation– Normal strain: change in length of a line segment– Shear strain: change in angle between two perpendicular line

segments• Displacement of P = (u, v, w)• Displacement of Q & R

P(x,y,z) Q

R P'(x+u,y+v,z+w)

Q'

R'

x

y

z

DxDy

Q

Q

Q

uu u x

xv

v v xxw

w w xx

R

R

R

uu u y

y

vv v y

y

ww w y

y

32

Strain– Strain is defined as the elongation per unit length

– Tensile (normal) strains in x- and y-directions

– Strain is a dimensionless quantity. Positive for elongation and negative for compression

P PDx Dux

Dy

Duy

x x11

x 0

y y22

y 0

u ulim

x xu u

limy y

Textbook has different, but more rigorous derivations

33

Shear Strain– Shear strain is the tangent of the change in angle between

two originally perpendicular axes

– Shear strain (change of angle)

– Positive when the angle between two positive (or two negative) faces is reduced and negative when the angle is increased.

– Valid for small deformation

P

Dux

Duy

q2

q1

p/2 – g12

y1 1

x2 2

u~tan

xu

~tany

y yx x12 1 2

x 0 y 0

u uu ulim lim

x y x y

y x12 12

u u1 12 2 x y

Dx

Dy

34

Strain Tensor

• Strain Tensor

• Cartesian Components

• Vector notation

ij i j e e11 12 13

ij 12 22 23

13 23 33

[ ]

11 11

22 22

33 33

12 12

23 23

13 13

{ }2

2

2

35

Volumetric and Deviatoric Strain

• Volumetric strain (from small strain assumption)

• Deviatoric strain

0V 11 22 33 11 22 33

0

V V(1 )(1 )(1 ) 1

V

V 11 22 33 kk

1 1V ij ij V ij3 3

e e 1

dev :e I x2

x3

x1

1

e11

e22

e33

11

Exercise: Write Idev in matrix-vector notation

36

Stress-Strain Relationship

• Applied Load shape change (strain) stress• There must be a relation between stress and strain• Linear Elasticity: Simplest and most commonly used

Proportional limit

Yield stress

Ultimate stress

Strain hardening

Necking

Fracture

s

e

Young’s modulus

37

Generalized Hooke’s Law

• Linear elastic material

– In general, Dijkl has 81 components

– Due to symmetry in sij, Dijkl = Djikl

– Due to symmetry in ekl, Dijkl = Dijlk

– from definition of strain energy, Dijkl = Dklij

• Isotropic material (no directional dependence)– Most general 4-th order isotropic tensor

– Have only two independent coefficients (Lame’s constants)

21 independent coeff

ijkl ij kl ik j l il jk

ij kl ik j l il jk

D

( )

ij ijkl kl: , D D

2 D 1 1 I

38

Generalized Hooke’s Law cont.

• Stress-strain relation

– Volumetric strain:

– Off-diagonal part:

– Bulk modulus K: relation b/w volumetric stress & strain

– Substitute so that we can separate volumetric part

• Total deform. = volumetric + deviatoric deform.

ij ijkl kl ij kl ik j l il jk kl kk ij ijD [ ( )] 2

kk 11 22 33 v

12 12 122 m is the shear modulus

1 m j j kk j j j j kkI 3 2 (3 2 )

2m kk v3

( ) K Bulk modulus

23

K

39

Generalized Hooke’s Law cont.

• Stress-strain relation cont.2

ij kk ij ij32

kk ij ij kk ij31

ij kl kl ik j l ij kl kl3

ij kl dev ijkl kl

(K ) 2

K 2

K 2 [ ]

K 2 (I )

devσ K 2 : ε 1 1 I

Deviatoric partVolumetric part

v

m

σ K 2

σ

1 e

1 s

dev :e I Deviatoric strain

Important for plasticity; plastic deformation only occurs in deviatoric partvolumetric part is always elastic

dev :s I Deviatoric stress

40

Generalized Hooke’s Law cont.

• Vector notation– The tensor notation is not convenient for computer

implementation

– Thus, we use Voigt notation

– Strain (6×1 vector), Stress (6×1 vector), and C (6×6 matrix)

2nd-order tensor vector4th-order tensor matrix

1,111

2,222

3,333

12 1,2 2,1

23 2,3 3,2

13 1,3 3,1

u

u

u

2 u u

2 u u2 u u

11

22

33

12

23

13

D

e12 + e21 = 2e12 You don’t need 2 here

41

3D Solid Element cont.

• Elasticity matrix

• Relation b/wLame’s constantsand Young’s modulusand Poisson’s ratio

(3 2 ), E

2( )E E

,(1 )(1 2 ) 2(1 )

devK 2 D 1 1 I

2 0 0 0

2 0 0 0

2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

D

1

1

1

0

0

0

1

2 1 13 3 31 2 13 3 31 1 23 3 3

dev 12

12

12

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

I

42

Plane Stress

• thin plate–like components parallel to the xy–plane• the plate is subjected to forces in its plane only• 13 = 23 = 33 = 0

• 13 = 23 = 0, but 33 ≠ 0

11 11

22 2221

12 122

1 0E

{ } 1 01

0 0 (1 )

43

Plane Strain

• the strains with a z subscript are all equal to zero• deformation in the z–direction is constrained, (i.e., u3

= 0)• 13 = 23 = 33 = 0• can be used if the structure is infinitely long in the z–

direction

• 13 = 23 = 0

11 11

22 221

12 122

1 0E

{ } 1 0(1 )(1 2 )

0 0

33 11 22E

(1 )(1 2 )

44

MECHANICS OF CONTINUOUS BODIES

1.4

45

Balance of Linear Momentum

• Balance of linear momentum

• Stress tensor (rank 2):

• Surface traction

• Cauchy’s Lemma

b d d d nf t a

ij i j e e11 12 13

ij 21 22 23

31 32 33

nt n

n nt t n nt n t n

W

G

n

tnX1

X2

X3

e1 e2

e3

X

fb: body forcetn: surface traction

46

Balance of Linear Momentum cont

• Balance of linear momentum

– For a static problem

• Balance of angular momentum

b( )d d d f a n

b[ ( )]d 0 f a

b( ) 0 f a

b bij,i j0 f 0 f

b d d d nx f x t x a

Tij j i

Divergence Thm

47

Boundary-Valued Problem

• We want to determine the state of a body in equilibrium

• The equilibrium state (solution) of the body must satisfy– local momentum balance equation

– boundary conditions

• Strong form of BVP– Given body force fb, and traction t

on the boundary, find u such that

and

• Solution space

h

s

on essential BC

on natural BC

u 0

t n

b 0 f (1)

(2)

(3)

W

G

n

tX1

X2

X3

e1 e2

e3

X

fb

2 3 h sAD [C ( )] | 0 on , on u u x n t x

48

Boundary-Valued Problem cont.

• How to solve BVP– To solve the strong form, we want to construct trial solutions

that automatically satisfy a part of BVP and find the solution that satisfy remaining conditions.

– Statically admissible stress field: satisfy (1) and (3)

– Kinematically admissible displacement field: satisfy (2) and have piecewise continuous first partial derivative

– Admissible stress field is difficult to construct. Thus, admissible displacement field is used often

49

Principle of Minimum Potential Energy (PMPE)

• Deformable bodies generate internal forces by deformation against externally applied forces

• Equilibrium: balance between internal and external forces

• For elastic materials, the concept of force equilibrium can be extended to energy balance

• Strain energy: stored energy due to deformation (corresponding to internal force)

• For elastic material, U(u) is only a function of total displacement u (independent of path)

1U( ) ( ) : ( )d

2 u u u ( ) : ( )u D u

Linear elastic material

50

PMPE cont.

• Work done by applied loads (conservative loads)

• U(u) is a quadratic function of u, while W(u) is a linear function of u.

• Potential energy

sbW( ) d d .

u u f u t

Gh

Gg

W

u1 u2

u3

x1

x2

x3

f s

f b

sb

( ) U( ) W( )

1( ) : ( )d d d .

2

u u u

u u u f u t

51

PMPE cont.

• PMPE: for all displacements that satisfy the boundary conditions, known as kinematically admissible displacements, those which satisfy the boundary-valued problem make the total potential energy stationary on DA

• But, the potential energy is well defined in the space of kinematically admissible displacements

• No need to satisfy traction BC (it is a part of potential)

• Less requirement on continuity

• The solution is called a generalized (natural) solution

1 3 h[H ( )] | 0 on , u u xZ

H1: first-order derivatives are integrable

52

Example – Uniaxial Bar

• Strong form

• Integrate twice:

• Apply two BCs:

• PMPE with assumed solution u(x) = c1x + c2

• To satisfy KAD space, u(0) = 0, u(x) = c1x• Potential energy:

L

FxEAu 0 x [0,L]

u 0 x 0

EAu(L) F x L

1 2EAu(x) c x c Fx

u(x)EA

L 2 210

1

1U EA(u) dx EALc

2W Fu(L) FLc

11 1

d d(U W) EALc FL 0

dc dc 1

F Fxc u(x)

EA EA

53

Virtual Displacement Field

• Virtual displacement (Space Z)– Small arbitrary perturbation (variation) of real displacement

– Let ū be the virtual displacement, then u + ū must be kinematically admissible, too

– Then, ū must satisfy homogeneous displacement BC

– Space Z only includes homogeneous essential BCs

• Property of variation

u u u uV Z

h1 3[H ( )] , 0

u u uZ

u

ū

In the literature, du is often used instead of ū

d d( )dx dx

u u

0 0

1 dlim [( ) ( )] ( ) .

d

u u u u u

54

PMPE As a Variation

• Necessary condition for minimum PE– Stationary condition <--> first variation = 0

• Variation of strain energy

0 0

1 d( ; ) lim [ ( ) ( )] ( ) 0

d

u u u u u u u

Zf or all u

0

dd

u u u ux x x

( ) ( ) u u : D

12

U( ; ) ( ) : : ( ) ( ) : : ( ) d

( ) : : ( )d

a( , )

u u u D u u D u

u D u

uu

Energy bilinear form

55

PMPE As a Variation cont.

• Variation of work done by applied loads

• Thus, PMPE becomes

– Load form is linear with respect to ū

– Energy form a(u, ū) is symmetric, bilinear w.r.t. u and ū

– Different problems have different a(u, ū) and , but they share the same property

• How can we satisfy “for all ū ” requirement? Can we test an infinite number of ū?

sbW( ; ) d d ( )

u u u f u t u

a( , ) ( ), uu u u Z

( )u

( )u

( ; ) U( ; ) W( ; ) 0 u u u u u u

Load linear form

56

Example – Uniaxial Bar

• Assumed displacement u(x) = cx – virtual displacement is in the same space with u(x):

• Variation of strain energy

• Variation of applied load

• PMPE

u(x) cx

L L2

0 0 00L

0

d 1 1U EA (u u) dx 2EA(u u) u dx

d 2 2

EAuu dx EALcc

0

dW F u(L) u(L) Fu(L) FLc

d

U W c(EALc FL) 0 Fxu(x) cx

EA

57

Principle of Virtual Work

• Instead of solving the strong form directly, we want to solve the equation with relaxed requirement (weak form)

• Virtual work – Work resulting from real forces acting through a virtual displacement

• Principle of virtual work – when a system is in equilibrium, the forces applied to the system will not produce any virtual work for arbitrary virtual displacements– Balance of linear momentum is force equilibrium

– Thus, the virtual work can be obtained by multiplying the force equilibrium equation with a virtual displacement

– If the above virtual work becomes zero for arbitrary ū, then it satisfies the original equilibrium equation in a weak sense

b 0 f

bW ( ) d

f u

58

Principle of Virtual Work cont

• PVW

– Integration-by-parts

– Divergence Thm

– The boundary is decomposed by

bij,i j j( f )u d 0

u Z

bij,i j j ju d f u d

bij j ,i ij j,i j j( u ) u d f u d

bi ij j ij j,i j jn u d u d f u d

h sj i ij ju 0 on andn t on

h s

Sb

j j ij j,i j jt u d u d f u d

59

Principle of Virtual Work cont

• Since sij is symmetric

• Weak Form of BVP

Internal virtual work = external virtual work

Starting point of FEM

• Symbolic expression

– Energy form:

– Load form:

sb

ij ij j j j jd f u d t u d u Z

a( , ) ( ) uu u u Z

a( , ) : d

uu

sb( ) d d

u u f u t

ij j,i ij j,i ij iju sym(u ) ji

i,j ijj i

uu1sym(u )

2 X X

[ ]{ } { }K d FFE equation

60

Example – Heat Transfer Problem

• Steady-State Differential Equation

• Boundary conditions

• Space of kinematically admissible temperature

• Multiply by virtual temperature, integrate by part, and apply boundary conditions

Q

domain A

Sq

ST

qn

T = T0

n = {nx, ny}T

yx

TT k Q 0kyx yx

0 T

n x x y y q

T T on S

dT dTq n k n k on S

dx dy

1TT H ( ) T( ) 0, S x xZ

qx y n qS

T T T Tk k d TQ d Tq dS , T

x x y y

Z

61

Example – Beam Problem

• Governing DE

• Boundary conditions for cantilevered beam

• Space of kinematically admissible displacement

• Integrate-by-part twice, and apply BCs

4

4

d vEI f(x), x [0,L]

dx

2 3

2 3

dv d v d vv(0) (0) (L) (L) 0

dx dx dx

f(x)

x L

2 dvv H [0,L] v(0) (0) 0

dx

Z

2 2L L

2 20 0

d v d vEI dx f vdx, v

dx dx Z

62

Difference b/w Strong and Weak Solutions

• The solution of the strong form needs to be twice differentiable

• The solution of the weak form requires the first-order derivatives are integrable bigger solution space than that of the strong form

• If the strong form has a solution, it is the solution of the weak form

• If the strong form does not have a solution, the weak form may have a solution

F

yx

TT k Q 0kyx yx

x yT T T T

k k dx x y y

63

FINITE ELEMENT METHOD1.5

64

Finite Element Approximation

• Difficult to solve a variational equation analytically• Approximate solution

– Linear combination of trial functions– Smoothness & accuracy depend on

the choice of trial functions– If the approximate solution is expressed in the entire domain,

it is difficult to satisfy kinematically admissible conditions• Finite element approximation

– Approximate solution in simple sub-domains (elements)– Simple trial functions (low-order polynomials) within an

element– Kinematically admissible conditions only for elements on the

boundary

n

i ii 1

u(x) c (x)

Exact solution

Approximate solution

x

u(x)

Finite elements

Nodes

Piecewise-linearapproximation

65

Finite Elements

• Types of finite elements

1D 2D 3D • Variational equation is imposed on each element.

One element

1 0.1 0.2 1

0 0 0.1 0.9dx dx dx dx

66

Trial Solution– Solution within an element is approximated using simple

polynomials.

– i-th element is composed of two nodes: xi and xi+1. Since two unknowns are involved, linear polynomial can be used:

– The unknown coefficients, a0 and a1, will be expressed in terms of nodal solutions u(xi) and u(xi+1).

1 2 3 n 1 n+1 n

1 2 n 1 n

xi xi+1

il

0 1 i i 1u(x) a ax, x x x

67

Trial Solution cont.– Substitute two nodal values

– Express a0 and a1 in terms of ui and ui+1. Then, the solution is approximated by

– Solution for Element e:

– N1(x) and N2(x): Shape Function or Interpolation Function

i i 0 1 i

i 1 i 1 0 1 i 1

u(x ) u a ax

u(x ) u a ax

1 2

i 1 ii i 1(e) (e)

N (x) N (x)

x x x xu(x) u u

L L

1 i 2 i 1 i i 1u(x) N (x)u N (x)u , x x x

68

Trial Solution cont.

• Observations– Solution u(x) is interpolated using its nodal values ui and ui+1.

– N1(x) = 1 at node xi, and =0 at node xi+1.

– The solution is approximated by piecewise linear polynomial and its gradient is constant within an element.

– Stress and strain (derivative) are often averaged at the node.

N1(x) N2(x)

xi xi+1

xi xi+1 xi+2 xi xi+1 xi+2

ui ui+1

ui+2 dudx

u

69

1D Finite Elements

• 1D BVP

• Use PVW

• Integration-by-parts

– This variational equation also satisfies at individual element level

2

2

d up(x) 0, 0 x 1s

dxu(0) 0

Boundary conditionsdu(1) 0

dx

21

20

d up udx 0

dx

(1)u H [0,1] u(0) 0 Z

Space of kinematicallyadmissible displacements

11 1

0 00

du duduu dx pudx

dx dx dx

70

1D Interpolation Functions

• Finite element approximation for one element (e) at a time

• Satisfies interpolation condition

• Interpolation of displacement variation (same with u)

• Derivative of u(x)

(e) (e) (e)i 1 i 1 2u (x) uN (x) u N (x) N d

i(e) (e)1 2

i 1

uN N

u

d N

(e)i i

(e)i 1 i 1

u (x ) u

u (x ) u

(e) (e) (e)i 1 i 1 2u (x) uN (x) u N (x) N d

(e)i i (e) (e)1 2

(e) (e)i 1 i 1

u udN dNdu 1 1dx dx dx u uL L

B d

71

Element-Level Variational Equation

• Approximate variational equation for element (e)

– Must satisfied for all – If element (e) is not on the boundary, can be arbitrary

• Element-level variational equation

j j

i i

ix x(e)T (e)T (e) (e) (e)T (e)T (e)Tx x

i 1

du(x )

dxdx p(x)dxdu

(x )dx

d B B d d N d

(e)u (x) Z(e)d

j j

i i

ix x(e)T (e) (e) (e)Tx x

i 1

du(x )

dxdx p(x)dxdu

(x )dx

B B d N

i(e) (e) (e)

i 1

du(x )

dx[ ]{ }du

(x )dx

k d f

2x2 matrix 2x1 vector

72

Assembly

• Need to derive the element-level equation for all elements

• Consider Elements 1 and 2 (connected at Node 2)

• Assembly

(1) (1)1

11 12 1 1

2 221 222

du(x )k k u f dx

u f duk k (x )dx

(2) (2)2

2 211 12

3 321 223

du(x )u fk k dx

u f duk k (x )dx

(1) (1) (1)111 12 11

(1) (1) (2) (2) (1) (2)221 22 11 12 2 2

(2) (2) (2)321 22 3

3

du(x )k k 0 fu dx

k k k k u ff 0

u du0 k k f (x )dx

Vanished unknown term

73

Assembly cont.

• Assembly of NE elements (ND = NE + 1)

• Coefficient matrix [K] is singular; it will become non-singular after applying boundary conditions

E EE

DD

D D

(1) (1) (1)11 12 11(1) (1) (2) (2) (1) (2)21 22 11 12 2 22

(2) (2) (2) (2) (3)3221 22 11 3 3

N (N )(N )N N21 22 N 1 N 1

N N

k k 0 0 fuk k k k 0 ffu

u0 k k k 0 ff

u f0 0 0 k k

D

1

N

N 1

du(x )

dx0

0

du(x )

dx

[ ]{ } { }K q F

74

Example

• Use three equal-length elements

• All elements have the same coefficient matrix

• RHS (p(x) = x)

2

2

d ux 0, 0 x 1 u(0) 0, u(1) 0

dx

(e)(e)2 2

1 1 3 31, (e 1,2,3)

1 1 3 3L

k

i 1 i 1

i i

x x1 i 1(e)(e)x x

2 i

i i 1

(e)

i i 1

N (x) x(x x)1{ } p(x) dx dx

N (x) x(x x )Lx x3 6L , (e 1,2,3)x x6 3

f

75

Example cont.

• RHS cont.

• Assembly

• Apply boundary conditions– Deleting 1st and 4th rows and columns

(3)(2)(1)321(3)(2)(1)

32 4

fff 1 4 71 1 1, ,

54 54 542 5 8fff

1

2

3

4

1(0)

543 3 0 0 2 43 3 3 3 0 54 54

0 3 3 3 3 7 554 540 0 3 38

(1)54

dudx

u

u

u

ududx

ì üï ïï ï-ï ïï ïï ïì üé ù- ï ï ï ïï ï ï ïê úï ï +ï ïï ïê ú- + - ï ïï ï ï ïê ú =í ý í ýê úï ï ï ï- + - ï ï ï ïê ú +ï ï ï ïï ï ï ïê ú- ï ï ï ïë ûî þ ï ïï ïï ï+ï ïï ïî þ

Element 1Element 2Element 3

2

3

u6 3 119u3 6 2

42 81

53 81

u

u

76

EXAMPLE cont.

• Approximate solution

• Exact solution

– Three element solutions are poor– Need more elements

4 1x, 0 x

27 34 1 1 1 2

u(x) x , x81 27 3 3 3

5 5 2 2x , x 1

81 27 3 3

0

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1x

u(x)

u-approx.u-exact

21u(x) x 1 x

6

77

3D Solid Element

• Isoparametric mapping– Build interpolation functions on the reference element– Jacobian: mapping relation between physical and reference

elem.• Interpolation and mapping

(a) Finite Element (b) Reference Element

x

h

z

(1,1,–1)

(1,1,1)

(–1,1,1)

(–1,1,–1)x1

x2

x3x4

x5

x6

x7x8

x2

x1

x3

(1, –1,–1)

(1, –1,1)

(–1, –1,1)

8

I II 1

( ) N ( )

u u 8

I II 1

( ) N ( )

x x

I I I I1

N ( ) (1 )(1 )(1 )8

Same for mapping and interpolation

78

3D Solid Element cont.

• Jacobian matrix

• Derivatives of shape functions

– Jacobian should not be zero anywhere in the element– Zero or negative Jacobian: mapping is invalid (bad element

shape)

8I

3 3 II 1

dN ( )dd d

x

J x

1 1 1

I I I I I I 2 2 2

1 2 3

3 3 3

x x x

N N N N N N x x xx x x

x x x

I IN N

Jx

1I IN N

J

x

J : Jacobian

79

3D Solid Element cont.

• Displacement-strain relation8

I II 1

( )

u B u

I ,1

I ,2

I ,3I

I ,2 I ,1

I ,3 I ,2

I ,3 I ,1

N 0 0

0 N 0

0 0 N

N N 0

0 N N

N 0 N

B8

I II 1

( )

u B u

iI ,i

i

NN

x

80

3D Solid Element cont.

• Transformation of integration domain

• Energy form

• Load form

• Discrete variational equation

1 1 1

1 1 1d d d d

J

8 81 1 1T T T

I I J J1 1 1I 1J 1

a( , ) d d d { } [ ]{ }

uu u B DB J u d k d

81 1 1T b T

I I1 1 1I 1

( ) N ( ) d d d { } { }

u u f J d f

T Th{ } [ ]{ } { } { }, { } d k d d f d Z

81

Numerical Integration

• For bar and beam, analytical integration is possible

• For plate and solid, analytical integration is difficult, if not impossible

• Gauss quadrature is most popular in FEM due to simplicity and accuracy

• 1D Gauss quadrature

– NG: No. of integ. points; xi: integ. point; wi: integ. weight

– xi and wi are chosen so that the integration is exact for (2NG – 1)-order polynomial

– Works well for smooth function

– Integration domain is [-1, 1]

NG1

i i1i 1

f ( )d f( )

82

Numerical Integration cont.

• Multi-dimensions

NG NG1 1

i j i j1 1i 1 j 1

f ( , )d d f( , )

NG NG NG1 1 1

i j k i j k1 1 1i 1 j 1k 1

f ( , , )d d d f( , , )

NGIntegration Points (xi)

Weights (wi)

1 0.0 2.02 .5773502692 1.0

3.7745966692

0.0.5555555556.8888888889

4.8611363116.3399810436

.3478546451

.6521451549

5.9061798459.5384693101

0.0

.2369268851

.4786286705

.5688888889x

h

x

h

x

h(a) 11

(b) 22 (c) 33

83

ELAST3D.m

• A module to solve linear elastic problem using NLFEA.m

• Input variables for ELAST3D.mVariable Array size Meaning

ETAN (6,6) Elastic stiffness matrix Eq. (1.81)

UPDATE Logical variable If true, save stress values

LTAN Logical variable If true, calculate the global stiffness matrix

NE Integer Total number of elements

NDOF Integer Dimension of problem (3)

XYZ (3,NNODE) Coordinates of all nodes

LE (8,NE) Element connectivity

84

function ELAST3D(ETAN, UPDATE, LTAN, NE, NDOF, XYZ, LE)%***********************************************************************% MAIN PROGRAM COMPUTING GLOBAL STIFFNESS MATRIX AND RESIDUAL FORCE FOR% ELASTIC MATERIAL MODELS%***********************************************************************%% global DISPTD FORCE GKF SIGMA % % Integration points and weights (2-point integration) XG=[-0.57735026918963D0, 0.57735026918963D0]; WGT=[1.00000000000000D0, 1.00000000000000D0]; % % Index for history variables (each integration pt) INTN=0; % %LOOP OVER ELEMENTS, THIS IS MAIN LOOP TO COMPUTE K AND F for IE=1:NE % Nodal coordinates and incremental displacements ELXY=XYZ(LE(IE,:),:); % Local to global mapping IDOF=zeros(1,24); for I=1:8 II=(I-1)*NDOF+1; IDOF(II:II+2)=(LE(IE,I)-1)*NDOF+1:(LE(IE,I)-1)*NDOF+3; end DSP=DISPTD(IDOF); DSP=reshape(DSP,NDOF,8); % %LOOP OVER INTEGRATION POINTS for LX=1:2, for LY=1:2, for LZ=1:2 E1=XG(LX); E2=XG(LY); E3=XG(LZ); INTN = INTN + 1; % % Determinant and shape function derivatives [~, SHPD, DET] = SHAPEL([E1 E2 E3], ELXY); FAC=WGT(LX)*WGT(LY)*WGT(LZ)*DET;

85

% Strain DEPS=DSP*SHPD'; DDEPS=[DEPS(1,1) DEPS(2,2) DEPS(3,3) ... DEPS(1,2)+DEPS(2,1) DEPS(2,3)+DEPS(3,2) DEPS(1,3)+DEPS(3,1)]'; % % Stress STRESS = ETAN*DDEPS; % % Update stress if UPDATE SIGMA(:,INTN)=STRESS; continue; end % % Add residual force and stiffness matrix BM=zeros(6,24); for I=1:8 COL=(I-1)*3+1:(I-1)*3+3; BM(:,COL)=[SHPD(1,I) 0 0; 0 SHPD(2,I) 0; 0 0 SHPD(3,I); SHPD(2,I) SHPD(1,I) 0; 0 SHPD(3,I) SHPD(2,I); SHPD(3,I) 0 SHPD(1,I)]; end % % Residual forces FORCE(IDOF) = FORCE(IDOF) - FAC*BM'*STRESS; % % Tangent stiffness if LTAN EKF = BM'*ETAN*BM; GKF(IDOF,IDOF)=GKF(IDOF,IDOF)+FAC*EKF; end end, end, end, endend

86

function [SF, GDSF, DET] = SHAPEL(XI, ELXY)%*************************************************************************% Compute shape function, derivatives, and determinant of hexahedral element%*************************************************************************%% XNODE=[-1 1 1 -1 -1 1 1 -1; -1 -1 1 1 -1 -1 1 1; -1 -1 -1 -1 1 1 1 1]; QUAR = 0.125; SF=zeros(8,1); DSF=zeros(3,8); for I=1:8 XP = XNODE(1,I); YP = XNODE(2,I); ZP = XNODE(3,I); % XI0 = [1+XI(1)*XP 1+XI(2)*YP 1+XI(3)*ZP]; % SF(I) = QUAR*XI0(1)*XI0(2)*XI0(3); DSF(1,I) = QUAR*XP*XI0(2)*XI0(3); DSF(2,I) = QUAR*YP*XI0(1)*XI0(3); DSF(3,I) = QUAR*ZP*XI0(1)*XI0(2); end GJ = DSF*ELXY; DET = det(GJ); GJINV=inv(GJ); GDSF=GJINV*DSF;end

SF(81): shape functions,

GDSF (38): shape functions derivatives

DET: Jacobian of the mapping