1. Abyssomicin C John Trant Department of Chemistry University of Ottawa, 2007.

Post on 04-Jan-2016

217 views 0 download

Tags:

transcript

1

Abyssomicin CJohn TrantDepartment of ChemistryUniversity of Ottawa, 2007

Abyssomicin C—From isolation to mechanism of action

3

An introduction to the tetrahydrofolate biosynthetic pathway

The isolation identification of Abyssomicin CA brief retrosynthetic overview of Abyssomicin CK.C. Nicolaou’s synthesis: The application of Lewis-

acid catalysed self-assembling (LACASA) Diels-Alder reaction

The mechanism of action

Folic Acid: An Introduction

4

Vitamin B9 Needed for the catalysis of one-carbon transfer reactions

including dTMP from dUMP, and in the catalysis of glycine synthesis.

Not synthesised in vertebrates, but synthesised in plants, archaea, fungi, bacteria, and some lower animals.

HN

N N

N

H2N

C

NH

O

NH

CO2H

CO2HO

NH

O

ON

O

OH

OP-OO-

O

NH

O

ON

O

OH

OP-OO-

O

dUMP dTMP

COO-

OHHOOH

COO-

OOH

COO-

Aminodeoxychorismate Synthase

COO-

OOH

COO-

Glutamine Glutamic Acid

COO-

ONH3

+COO-

NH3PabA PabB

COOH

NH2

NH

NHN

N

NH2

OP

OP

HO O

HO OH

O

Dihydropteroate Synthetase

NHN

HN N

H2N

COO-

HN

DihydrofolateSynthetase

NHN

HN N

H2N

C

HN

Glutamic Acid

OHN

CO2HHO2C

H2O

DihydrofolateOxidase

ONH

N

N N

H2N

C

HN

OHN

CO2HHO2C

O

Folic Acid Dihydrofolate

Dihydropteroate

O

O

p-Aminobenzoic Acid

Dihydropteridine

ChorismateShikimic Acid

Aminodeoxychorismate Lyase

Aminodeoxychorismate

p-Aminobenzoic acid/Tetrahydrofolate pathway

5

TrimethoprimSulfa Drugs

6

Kozlowski, M.C et al. J. Am. Chem. Soc. 1995. 117 2128-2140.

CO2-

OHO CO2

-

-O2C

OH

O

CO2-

Prephenate

CO2-

OH

p-hydroxybenzoate

Chorismate mutase

Chorismatelyase

Anthranilatesynthase

p-Aminobenzoate Synthase

CO2-

OCO2

-

NH3+

CO2-

NH3+

CO2-

NH3+O CO2

-

2-amino-2-deoxyisochorismate

Anthranilate

4-amino-4-deoxychorismate

CO2-

NH3+

p-aminobenzoate

IsochorismateSynthase

CO2-

O CO2-

OH

Isochorismate

Tryptophan

Phenylalanineand Tyrosine

Ubiquinone (Coenzyme Q)

Siderophorebiosynthesis

Folate

p-Aminobenzoic acid/Tetrahydrofolate pathway

7

COO-

OHHOOH

COO-

OOH

COO-

Aminodeoxychorismate synthase

COO-

OOH

COO-

Glutamine Glutamic Acid

COO-

ONH3

+COO-

NH3PabA PabB

COOH

NH3

NH

NHN

N

NH2

OP

OP

HO O

HO OH

O

Dihydropteroate synthetase

NHN

HN N

H2N

COO-

HN

Dihydrofolatesynthetase

NHN

HN N

H2N

C

HN

Glutamic Acid

OHN

CO2HHO2C

H2O

DihydrofolateOxidase

O

HNN

NN

NH2

C

NH

O NH

HO2C CO2H

O

Folic Acid Dihydrofolate

Dihydropteroate

O

O

p-aminobenzoic acid

dihydropteridine

ChorismateShkimic AcidAminodeoxychorismate

lyase

Aminodeoxychorismate

Abyssomicin C

The Abyssomicins

8

O

OH

O

OOO

O

OH

O

OHO

O

ON O

OH

O

OOHO

DCB

Verrucosispora AB-18-032

Riedlinger, J. et al. J. Antibiotics. 2004. 57, 271-279.Bister, D. et al. Angew. Chem. Intl. Ed. 2004. 43, 2574-2576.

Abyssomicin C as a Chorismate mimic

9 Copley, A.D.; Knowles, J.R. J. Am. Chem. Soc. 1987. 109, 5008-5013.

O

OH

O

OO

O

HO O

COO-

-OOC

O

OH

COO-

CO

-OChorismate

O

OH

O

OO

O

O

OH

O

OO

O

O

OH

O

OO

O

O

OH

O

OO

O

O

OH

O

OO

O

O

OH

O

OO

O

Abyssomicin C

10

O

OH

O

OO

O

11

A Short Retrosynthetic OverviewSnider/Sorenson/Couladaros Approach to the initial disconnection

Snider, B.B.; Zou, Y. Org. Lett. 2005. 7, 4939-4941.Zapf, C.W.; Harrison, B.A.; Drahl, C.; Sorenson, E.J. Angew. Chem. Int. Ed. 2005. 44, 6533-6537.Couladouros, E.A.; Bouzas, E.A.; Magos, A.D. Tet. Lett. 2005. 62, 5272-5279.

O

OH

O

OOO

OH

O

O

OOO

MeO

O

OO

O

O

O

O

OMeOO

O

O

OLi

MeO

1

12

A Short Retrosynthetic OverviewSorenson’s Retrosynthesis of 1

Snider’s Retrosynthesis of 1

O O

1

O OPO

OO

O O

1

(MeO)2P

O

OPO

O

OO

O OP

A Short Retrosynthetic Overview

13

Rath, J.; Kinast, S.; Maier, M.E. Org. Lett. 2005. 7, 3089-3092.Zografos, A.L.; Yiotakis, A.; Georgiadis, D. Org. Lett. 2005. 7, 4512-4518.

Maier’s and Georgiadis’ Retrosynthesis of Abyssomicin C

O

OH

O

OOO

O

X

OP

O

OP

O

O

O

OH

O

O

TBSO

O

O

HO

O

OAcO OR

POTBSO

OH

AcOH

O

Nicolaou’s Retrosynthesis

14 Nicolaou, K.C.; Harrison, S.T. Angew. Chem. Int. Ed. 2006. 45, 3256-3260.Nicolaou, K.C.; Harrison, S.T. J. Am. Chem. Soc. 2007. 129, 429-440.

O

OH

O

OOO

O

OH

O

OOO

O

OH

O

O

O

AcO

OH

OO

OH

O

CH3

AcO

O

O

CH3OCH3

O

O

OH

O

OMe

15

OH

O

O

O

O

HO

O

MeO

MeOH

OH

O

OCH3

OH

O

O

O

MeOH

OH

O

MeO

MeO

OH

OMeO

OH

OMeO

AB

C

D

A:B:C:D=1.3:1.2:1.3:1.0

But...

16

Ward, D. E.; Abaee, M.S. Org .Lett. 2000. 2, 3937-3940.

120º C

17

Examples from literature

Ward, D. E.; Abaee, M.S.Org .Lett. 2000. 2, 3937-3940.

O

MeO

OH

O

MeO

OL.A.

R1B(OR2)2

OH R1BOR2

O

THF 16 h25ºC

PhCH3

R1 OHOH

60-80%endo:exo 2:1-9:1

8 examples

1)

2) Me3N(O)H2O

Batey, R.A.; Thadani, A.N.; Lough, A.J. J. Am. Chem. Soc. 1999. 121, 450-45.

R

OHOH

3 eq

AlMe3

OH

R 49-67%dr 1:1-3:12 examples

Bertozzi, F.; Olsson, R.; Frejd, T. Org. Lett. 2000. 2, 1283-1286.

OH

MgX

RR

OH

130 ºC3 h

60%dr 9:11 example

Stork, G.; Chan, T.Y. J. Am. Chem. Soc. 1995. 117, 6595-6596.

OH

MeMgBr

BrMgOO

O

O

O

95%

O

MeO

OMgBr

Benzene0-25ºC

Ward’s Solution

18 Ward, D.E.; Abaee, M.S. Org. Lett. 2000. 2, 3937-3940.

An Early Attempt at Olefination

19

O

O

O

O OHKHMDS

O2, P(OEt)3HO

O OH

LiO

O

O OH

H3O+

HO

O OH

HO

O

O OH

HO

O OH

HO

LiOH

96%

Nicolaou, K.C.; Harrison, S.T. J. Am. Chem. Soc. 2007. 129, 429-440.

A Modified Julia-Olefination Strategy

20

O

O OH1) NaSPh

2) MeOH, H2SO4

SPh

O OH

MeO

1) H2O2

2) TMSCl, NEt3, DMAP

SO2Ph

O OTMS

MeO

1) LiHMDS, CH2ICI2) Na (Hg)3) aq HCl, MeOH

O OH

MeO

71% 72%

82%

OH

Me2Zn

0 ºC 5min

HOHO

MeMgBr

0 ºC 5min

5 min

0 ºC

OO

S- BINOL

MgBrZn

O

MeO

O

O

Zn

O

O

OMg

Br

OO

O

95% yield93% ee

21Ward, D.E.; Souweha, M. S. Org. Lett. 2005. 7, 3533-3536.

The Disadvantages

22

Stoichiometric amount of enantiopure BINOL and ZnMe2 in the first step of the synthesis.

Synthesis had become lengthy (7 steps, 38% yield).

O OH

MeO

MeON

O 1.5eq PhSCH3

1.5 eq DABCO1.5 eq n-BuLi

OS

Ph

1.1 eq catecholborane

0.1 eq

NB

O

H PhPh

Me-(R)-CBSOHS

Ph

95% yield, 90% eeO

H

HPhS

O

30%

Toluene 55 ºC

MeMgBrMethyl Acrylate

81%

Asymmetric Borane Reduction

23

30%!!!!

24

Use of “sacrificial” alcohol resulted in no increase in yield.

Lewis Acid scan produced no increase of the yield (TiCl4, AlCl3, Zn(OTf)2, MgBr2•OEt2/i-Pr2NEt).

But...Remember that the enantioselective Diels-Alder Reaction was faster than the racemic version...

Bidentate Ligands

25

Entry Auxiliary Base/Metal Reaction Time1 (h)

Yield (%)

1 None MeMgBr (1.0 eq) 24 30 2 (±)-Binol MeMgBr (1.0 eq)

Me2Zn (1.0 eq) 24 <5

3 OH

OH

MeMgBr (1.0 eq) Me2Zn (1.0 eq)

36 35

4 OH

NH2

MeMgBr (2.0 eq) 24 49

5 OH

N

MeMgBr (2.0 eq) 48 55

6 2eq “ ” MeMgBr (3.0 eq) 48 70 7 3 eq “ ” MeMgBr (4.0 eq) 12 80

1) Time required for consumption of diene as monitored by NMR.

6

The Proposed Transition State

26

OHS

Ph

O

H

HPhS

O

80%

Toluene 55 ºC

MeMgBrMethyl Acrylate

O

O

OMg

Br

OMg

N

MeOH

PhS

O

O

PhSH

H

O

O

PhSH

OHLiHMDS; O2, P(OEt)3

74%

0.5 eq. dtBB9.6 eq Li

MeI, K2CO3

HOCO2Me

O

OAcO

MeO

1) t-BuOOH VO(OEt)32) Ac2O

99%

88%

1)2.5 eq LiHMDS 1 hr -78 to 25 ºC

O

OTES

O

O

3) TESCl, Imidazole DMAP97%

2) aq NH4Cl 66 ºC 2h

O

OO

MeO

O-

Julia-Type Reduction

27 dtBB

[O]

[O]

O

O

PhO2SH

OH

HO

O

H

OH

28

O

OH

O

OO

O

Synthesis of The Coupling Partner

29

HO OTBS SO3 PyridineDCM:DMSO (2:1) O OTBS

MgBr2 eqTHF -78 ºC

OTBS

OH

74% (two steps)

1) NaH, PMBCl, TBAI, DMF2) HCl, MeOH3) SO3 Pyridine, DCM:DMSO (2:1)

O

OPMB84%

O

OTES

O

O

1) t-BuLi, THF2)

O

OPMB

O

OTES

O

OOH

OPMB

61%

3 eq DDQDCM: NaHCO3 saturated (10:1)

O

OTES

O

OOH

5 mol% Grubbs 2HO

96%

O

OTES

O

OHOOH

30

Various homodimerised and polymerised by-products

5 mol% Grubbs 2

O

OTES

O

OOHHO

1 mol% HClMeOH

25 ºC, 1 h O

OH

O

OOHHO

5 mol% Grubbs 2

O

OH

O

OHOOH

IBXMnO2

Dess-MartinPDCSwern

O

OH

OO

OOH

94%

78%

O

O

O

OOO

31

Covers blue

A New Approach

32

O

OTES

O

O

AcO O

1) 1.2 eq t-BuLi2) O

OTES

O

OAcO OH

IBXDMSO 25 ºC

45 min

75%

O

OTES

O

OAcO O

90%

5 eq (CH2SH)25 eq BF3 OEt2DCM, 12 h

O

OH

O

OAcO S

S

90%

3.4 eq K2CO3MeOH 25 ºCO

OH

O

OHO S

S

90%

33

O

OH

O

OHO S

S1) IBX2)

MgBr O

OH

O

O

SSHO

5 mol% Grubbs 2

65%

85%

2.5 eq IBXDMSO

50%

3 eq PhI(OTFA)2CH3CN/H2O (10:1)

25 ºC 10 min

73%

O

OH

O

O

SS

HOH

H

O

OH

O

O

SS

OH

H

O

OH

O

OO

H

H

O

34

5.6% overall yield, 19 steps from Weinreb AmideThe NMR did not match that of the previously

isolated natural compound.After 18 hours in CDCl3 a new set of peaks

appeared.The new peaks matched those of the previously

isolated abyssomicin C.

MeON

O

Generation of Possible Atropisomers

35

O

OH

O

O

SSHO

O

OH

O

O

SS

LnRu

HO

[si]

[re]

O

OH

O

OHO

SS

H

HLnRu

O

OH

O

OHOSS

LnRuH

H

si approach re approach

O

OH

O

OHO

SS

H

H

O

OH

O

OHOSS

H

H

Ru

PCy3Cl

Cl

Ph

NNMes Mes

5 mol% Grubbs 20.002M DCM

40 ºC 1hr

36Nicolaou and Harrison J. Am. Chem. Soc. 2006, 129, 430-440.

The Differences

37

O

OH

O

OOH

O

O

OH

O

OOH

OCDCl3

21

Nicolaou and Harrison J. Am. Chem. Soc. 2006, 129, 430-440.

O

OH

O

OOH

O

O

OH

O

OOH

OCDCl3

21

Nicolaou’s Proposed Mechanism

38

O

OH

O

OOO

O

OH

O

OOO

CDCl3/HCl

O

OH

O

OOO

O

OH

O

OOO

O+

OH

O

OOO

H+

HOH

O

O

OOO

O+

OH

O

OOO

H

O

OH

O

OOO

O

OH

O

OOO

H+ O

O

OH

O

HOOO

O

OH

O

HOO

O

OH

O

OHOO

H+

O

OH

O

OOO

O

OH

O

OOO

O+

OH

O

OOO

H+

O+

OH

O

OOO

H H

O+

OH

O

OOO

H H+

39

Biosynthetic Ramifications

39 Figure modified from Nicolaou et Harrison J. Am. Chem. Soc 2007. 129, 429-440.

O

OH

O

OOO

O

OH

O

OOO

L-selectride

O

OH

O

OOO-

H

O

OH

O

O-O

O

H

Z-enolate

E-enolate

O

OH

O

OOHO

H

O

OH

O

OOHO

H

H3O+

O

OH

O

OOO

H

Abyssomicin D

Iso-abyssomicin D

atrop-abyssomicin C

abyssomicin C

L-selectride

H3O+

Biosynthetic Ramifications

40

Abyssomicin C

Figure modified from Nicolaou et Harrison J. Am. Chem. Soc. 2007. 129, 429-440.

Time (h)

Atrop-abyssomicin C

N

O

OHOH

HO

O

NH2

H H

NADH

NH

Me Me

CO2EtEtO2C

Minimum Inhibitory Concentrations for the analogues

41

O

OH

COO-

CO

-O

O

OH

O

OO

H

H

O

Abyssomicin C20 µM

O

OH

O

OO

H

H

O

atrop-Abyssomicin C15 µM

O

OAc

O

OO

H

H

O

Ac-Abyssomicin C20 µM

O

OH

O

OO

H

H

SS

Dithiane atrop-Abyssomicin C

70 µM

O

OH

O

OHO

H

H

SS

Dithiane-hydroxy Abyssomicin C

>500 µM

O

OH

O

O

H

>500 µM

O

OH

O

O

MeO

O

>500 µM

Proposed Mechanism of Action

42Figure adapted from Parsons, J. F. et. al. Biochem. 2002. 41, 2198-2208.

Narrowing the Search

43

Active Site

O

OH

COO-

CO

-O

Ser254

Ser256

Cys263Ser266 Thr270

Thr276

Ser342

Thr343

Thr345

Ser366

Thr368

Cys391

Ser393

Thr411Thr408Cys421

Ser422

Active Site

O

OH

COO-

CO

-O

Identifying the nucleophile

44Keller, H. et. al. Angew. Chem. Intl. Ed. 2007. 46, 8284-8286.

45

O

OH

O

OOO

H

HCys

O

OH

O

O-OO

Cys

O

OH

O

OHOO

Cys

O

OH

O

OHOOH

Cys

HOSH HN CO2H

SH

O

O

OH

O

OOO

H

HCys

O

OH

O

O-OO

Cys

O

OH

O

OHOO

Cys

O

OH

O

OHOOH

Cys

Minimum Inhibitory Concentrations for the analogues

46

O

OH

O

OO

H

H

O

Abyssomicin C20 µM

O

OH

O

OO

H

H

O

atrop-Abyssomicin C15 µM

O

OAc

O

OO

H

H

O

Ac-Abyssomicin C20 µM

O

OH

O

OO

H

H

SS

Dithiane atrop-Abyssomicin C

70 µM

O

OH

O

OHO

H

H

SS

Dithiane-hydroxy Abyssomicin C

>500 µM

O

OH

O

O

H

>500 µM

O

OH

O

O

MeO

O

>500 µM

In Conclusion

47

Examined the Folate Biosynthesis pathway.Examined Nicolaou’s application and modification

to Ward’s LACASA approach to Diels-Alder Reactions using an allylic alcohol diene.

Delved into Nicolaou’s Approach for the total synthesis of Abyssomicin C.

Demonstrated how Nicolaou’s synthetic work uncovered the potent inhibitor, atrop-abyssomicin C, leading to a better understanding of the abyssomicin mechanism of action.

Acknowledgements

48

Roger Tam Pawel Czechura Jennifer Chaytor Elisabeth Von Moos Tahir Rana Wendy Campbell Sandra Ferreira Ruoying “Gloria” Gong Jaqueline Tokarew Ivan Petrov

Dr. Michael SouwehaDr. Matthieu Leclere

Dr. Robert Ben

And NSERC for providing funding to make this possible

Couladouros’ Retrosynthesis of 2

49

O

O

O

OMeO

2

HO

OH

O

OMeO

OH

O

OMeO

O

I

O

OH

O

OMeO

AcOOAcO

OO

OMe

OO O

O

OMe EtO2C CO2Et

OO

OMe

3

4

5

Synthesis of Building Block 5

50

OO

MeO

OO

MeO

N

OO

MeO

N

OO

MeO

NMe3O

OMeO

(NMe2)2CHOMeNaCNBH4

MeI

NaHCO3

5

Takeda et al. J. Org. Chem. 1987, 52, 4135-4137

Synthesis of 4

51

EtO2C CO2Et

OMe

O

1) NaOEt 25ºC2) HCl, AcOH 105ºC

3) Ac2O, reflux OO O OO O

7 3:

NEt3, THF, Reflux

65% total yield

1) LiAlH4, THF 0ºC2) AcOCHCH2, Amino Lipase AK THF 0ºC

AcO OH(COCl)2, DMSO

DCM NEt3

AcO O

Putting The Pieces Together

52

OO

MeO

5AcO O

4

1) LDA, THF -100 C

2)O

OMeO

AcO OH1) IBX DMSO

2) Novozyme 435, Toluene phosphate buffer

OO

MeO

HO O

OO

MeO

HO O

CrCl2

IO

OMeO

HO OIBX DMSO

45-58% 41%

70%

Putting The Pieces Together Take 2

53

OO

MeO

5AcO O

4

1) LDA, THF -100 C

2)O

OMeO

AcO OH

45-58%O

OMeO

AcO OTBSTBSClImidazole

DMF

85%

OO

MeO

HO OTBS

78%

Guanidine HClEtOH/4M NaOH

1) IBX DMSO2) CrCl2, NiCl2 THF/DMSO

OO

MeOHO OTBS

I

1) TBAF, THF

44%

OO

MeOO O

70%

2) IBX, DMSO

I2

Toluene 100ºC

OMeO

OOO

OMeO

OOO

I

OMeO

OOO

IOMe

O

OOO

I

I-

54

OMeO

OOO

1 eq DMDOAcetone 0º-23ºC

18 hOMe

O

OOO

O

67%

10 eq. LiClDMSO50ºC

OHO

OOO

Oquantitative

O

OH

O

OOO 1.2 eq. PTSA

5 eq. LiClAcN 50ºC 2h.

50%

Synthesis of Vinyl Iodide 3

55

Entry Conditions Solvents E/Z Yield (%)

11 CrCI2, CH3I, 0°C THF 2:1 85 22 CrCI2, CH3I, 0°C THF:Dioxane; 6:1 2:1 75 33 Ph3P+(I-)CH2I,

NaHMDS, -78°C THF 1.2:1 87

1Takai’s Conditions (Takai, K. et al. J. Am. Chem. Soc. 1986, 108, 7408-7410. 2Evans’ Conditions (Evans, D.A. et al. J. Am. Chem. Soc.1993, 115, 4497-4513. 3Stork’s conditions (Stork, G. et al. Tet. Lett. 1989, 30, 2173-2174.

OI

Isomerisation Conditions

56

O

OH

O

OOH

O

O

OH

O

OOH

OCDCl3

21Entry Conditions Time (h) Ratio (1:2) 1 Unstabalised CDCl3 24 2:1 2 Xylenes 180°C 12 No isomerisation 3 TFA/DCM (1:1) 24 No isomerisation 4 1 eq. BF3• OEt2 DCM 24 No isomerisation 5 1 eq. CSA, DCM 24 No isomerisation 6 1 M aq HCl:THF (3:1) 24 No isomerisation 7 1M HCl in Et2O (0.2 eq.)/d6-THF 1 1.0:1.6 8 1M HCl in Et2O (0.2 eq.)/CDCl3 1 2.5:1.0 9 1 eq. p-TsOH, 5 eq. LiCl

CD3CN, 50°C 2 1.0:2.0

Isolation and Identification

57

Isolated in 2004 by Süssmuth from an actinomycete of genus Verrucosipora, discovered in a sediment sample from the Japanese Sea.

Investigated because of pABA inhibition identified by an agar-plate diffusion assay

Structure determination by NMR and X-Ray

Whoopdeedoo

58

Folic acid, Vitamin B12 is an essential vitamin.Not synthesised in vertebratesFungi, Bacteria, Plants, Achaea, and insects and

anthropods all synthesise it.So it has the possibility of providing broad

spectrum antibiotics.Sulfonamides and Trimethoprim are existing

antibiotics that inhibit the Folate Synthesis Pathway

Andrus’ Lactone

59

Agar Plate Diffusion Assay

60

Screened 930 extracts.

Riedlinger, J. et al. J. Antibiotics. 2004. 57, 271-279

6161 ibid

Verrucosispora AB-18-032

Borane Transition State

62

SPh

OB

Me

N O

PhPh

L2BH

A Shorter Route

63

O

OTES

O

O

AcO O

1) 1.2 eq. t-BuLi2) O

OTES

O

OAcO OH

IBXDMSO 25ºC

45 min

75%

O

OTES

O

OAcO O

90%

5 eq(CH2SH)25 eq BF3 OEt2DCM 12 h

O

OH

O

OAcO S

S

90%

3.4 eq K2CO3MeOH 25ºCO

OH

O

OHO S

S

O

OTES

O

OHO O

1.2 eq t-BuLi1.1 eq

O O

(CH2SH)2TMSOTf

76% over 2 steps

64

Kinetic Studies

O

OH

O

OOO

O

OH

O

OOO

Irreversible Inhibition: KIapp=390μM;

kinact=0.8 min-1

Keller, H et. al. Angew. Chem. Intl. Ed. 2007. 46, 8284-8286

Ward’s DA evidence

65