1. Atomic Processes 2. Ionization Equilibrium 3. Radiation ... · Interpretation of X-ray Spectra...

Post on 23-Jul-2020

4 views 0 download

transcript

H. Böhringer MPE Seminar 24.11.2005 1

Interpretation of X-ray Spectra from Hot Thermal Plamsa

1. Atomic Processes

2. Ionization Equilibrium

3. Radiation Processes

4. Equilibrium Spectra

5. Non-Equilibrium Spectra

6. Hot gas in Clusters of Galaxies

H. Böhringer MPE Seminar 24.11.2005 2

Hot Thermal Plasma in Astrophysics

Corona of the sun (~1 Mill. K)

Hot interstellar Medium and winds of galaxies

Supernova remnants (Kepler, Vela) ~ few Mill. K

Hot intra-cluster plasma of galaxy clusters

H. Böhringer MPE Seminar 24.11.2005 3

Radiation Processes that Contribute to the Radiation of the Hot Plasma

1. Line radiation: excited by electron collisions

dominant at T < 106 K

2. Free-free radiation (Bremsstrahlung) dominant above 107 K

3. Recombination radiation „free-bound emission“ e- + I+ I0 + γ

4. Two-photon radiation: only possibility to radiatively depopulate the 2S level in H-like ions (longer lifetimes, comparable to forbidden transitions)

• All these processes have at their base the collision of an electron with an ion !

continu um rad ia ti on

H. Böhringer MPE Seminar 24.11.2005 4

Atomic Processes (in a thin plasma)

1) Thin pasma concerning radtation transport

H. Böhringer MPE Seminar 24.11.2005 5

Free-Free Radiation Iformulae

1Hz

3cm

1serg

22138

22121

233

6

),(108.6

),(32

332

−−−−−

−−

⋅≈

⎟⎟⎠

⎞⎜⎜⎝

⎛=

ieiffTk

h

ieiffTk

h

Be

ff

NNZTgTe

NNZTgTekmc

e

B

B

ν

νππε

ν

ν

νGaunt factor

• The temperature dependence comes from the v-1 dependence

• The Boltzmann factor creates a sharp high frequency cut-off

• The Gaunt factor is near unity and has a weak temperature and frequency dependence (approximations given by Karzas & Latter 1961, Gronenschild & Mewe 1978)

Produced by the acceleration of an electron when it passes an ion close enough (inside the shielding radius). The observed radiation is an integral over all possible impact parameters and over the thermal distribution of the electrons. A rough results can be derived classically and analytically (see e.g. Jackson „Electrodynamics“). But quatum effects play an essential role for close impact. The quantum mechanical „corrections“ are summed into the „Gaunt factors“.

H. Böhringer MPE Seminar 24.11.2005 6

Free-Free Radiation IIGaunt factor

Frequency and temperature dependence of the Gaunt factor :

Typical Bremsstrahlungs spectrum :

ν

From Rybicki & Lightman

u = 4.8 1011 ν/T

γ2 = 1.58 105 Z2/T

H. Böhringer MPE Seminar 24.11.2005 7

Free-Free Emission IIIcooling coefficient

peff

Biff

Bieepe

ff

NNTdtdVdE

TgZTT

TgZchm

emkT

NNdVdtdET

⋅Λ=

⋅=Λ

⎟⎟⎠

⎞⎜⎜⎝

⎛==Λ

−−

)(

)(104.1)(

)(32

321)(

3cm

1serg

22127

23

6521ππ

The cooling rate increases with T1/2 and the cooling time also increases with T1/2 . At high temperature when most of the ions are completely ionized and free-free emission dominates, the total cooling coeficient also has this temperature dependence.

H. Böhringer MPE Seminar 24.11.2005 8

Recombination Radiation

Most of the recombination radiation comes from recombination into the ground state (for systems with not too many electrons) and about 5 – 15% contribution is from recombination into higher levels.

Considering only the ground state contribution we have the following frequency and temperature dependence:

ikT

fbkTh

fb heTgTei

χννεχν

≥∝ −−for

21 ),(χi = ionization potential

Typical spectrum:

hiχν =0

ν

H. Böhringer MPE Seminar 24.11.2005 9

Recombination Continuumof C at 106 K

H. Böhringer MPE Seminar 24.11.2005 10

Two-Photon Radiation

1S

2S 2P

allowed

allowed as for the simultaneous emission of two photons

functionGreensteinSpitzer)(strengthoscillator

)(),(

.

2.1

2

−=Φ=

Φ⋅∝−−

nf

Tgfe

osc

osckTh

νννε γ

ν

γ

The Spitzer-Greenstein function determines how the energy is distributed between the two photons. The function has a maximum for equal share of the energy:

νν0

Φ(ν)

H. Böhringer MPE Seminar 24.11.2005 11

Continnuum Radiation at 104 and 105 K

Dotted line: bremsstrahlung rad., dashed-dotted line:recombination rad., thin solid line: two-photon radiation

Bremsstrahlung Recombination

2-Photon

H. Böhringer MPE Seminar 24.11.2005 12

Continnuum Radiation at 106 and 107 K

Dotted line: bremsstrahlung rad., dashed-dotted line: recombination rad., thin solid line: two-photon radiation

H. Böhringer MPE Seminar 24.11.2005 13

Line Radiation I

For the line contribution to the spectrum we have to take care of:

• the excitation of higher levels by electron collisions (in the thin plasma approximation all excitations lead to radiation of a (or more) photons)

• the braching ratio of radiative transitions into different lower lewels

• all the transitions allowed by the selection rules have to be considered (inspection of Grotrian diagrams)

• Astrophysical X-ray spectra are dominated by allowed transitions contrary to what is observed in the optical band.

αβ

H. Böhringer MPE Seminar 24.11.2005 14

Grotrain Diagram for C0

H. Böhringer MPE Seminar 24.11.2005 15

Ionization Equilibrium Iprocesses

All radiation processe depend on Ne Ni.. Thus we need to now all Ni = Nx x fi (the chemical abundance of the species and the fractional ionization).

Thus we have to calculate the ionization structure (determined at this hot temperatures mostly by collisional ionization) either for a thermal equilibriukm situation or much more complicatedly by a time dependend model.

In thermal equilibrium we have:

I+n I+(n+1)

Ionization A

Recombination B

with A = B

Charge exchange Or if necessary with charge exchange rates included

H. Böhringer MPE Seminar 24.11.2005 16

Ionization Equilibrium IIprocesses

Ionization processes:

1. Direct ionization e- + O+ O++ + 2e-

2. Autoionization e- + O O* + e-

O* O+ + e-

Recombination processes :

1. Direct (radiative) recombination e- + O+ O + hν

2. Dielectronic recombination: e- + O+ O*

O* O + hν

Charge exchange:

e.g. O2+ + H O+ + H+

H. Böhringer MPE Seminar 24.11.2005 17

Ionization Equilibrium IIIionization rates (for C-ions)

without charge exchange

H. Böhringer MPE Seminar 24.11.2005 18

Inonization Ratesfor Fe-ions

H. Böhringer MPE Seminar 24.11.2005 19

Ionization Equilibrium IVrecombination rates (for Fe-ions)

H. Böhringer MPE Seminar 24.11.2005 20

Radiation Codesscheme of the calculations

H. Böhringer MPE Seminar 24.11.2005 21

Radiation Codes II

5) New: APEC

H. Böhringer MPE Seminar 24.11.2005 22

Thermal Spectra 105 and 106 K

Line radiation is very important, show here for solar metallicity

H. Böhringer MPE Seminar 24.11.2005 23

Thermal Spectra 107 and 108 K

With increasing temperature bremsstrahlung becomes more and more dominant (most species are almost fully ionized).

H. Böhringer MPE Seminar 24.11.2005 24

Equilibrium Ionization Cooling

Böhringer & Hensler 1989

H. Böhringer MPE Seminar 24.11.2005 25

X-ray Observations of Hot Plasma in Galaxy Clusters Leads to a Revision of Atomic Data

H. Böhringer MPE Seminar 24.11.2005 26

Revision of Atomic Data II

H. Böhringer MPE Seminar 24.11.2005 27

Non-Equlibrium Ionization

H. Böhringer MPE Seminar 24.11.2005 28

Elektron – Ion non-equilibration behind a shock

SN 1006

O VIII O VII

Electron temperature from spectral fit ~ 1.5keV

Ion temperature from line width ~ 530 keV

H. Böhringer MPE Seminar 24.11.2005 29

H. Böhringer MPE Seminar 24.11.2005 30

H. Böhringer MPE Seminar 24.11.2005 31

LTE versus non-LTE Cooling

H. Böhringer MPE Seminar 24.11.2005 32

green =

cie-model

H. Böhringer MPE Seminar 24.11.2005 33

Observation of O VI in the LTE Case

H. Böhringer MPE Seminar 24.11.2005 34

Observation of O VI in the non-LTE case

H. Böhringer MPE Seminar 24.11.2005 35

Results From the XMM Newton Observatory

H. Böhringer MPE Seminar 24.11.2005 36

Reflection Gratting Spectrometer (RGS) Spectrumof Abell 1835

H. Böhringer MPE Seminar 24.11.2005 37

XMM Observations of the X-ray Halo of M87

Böhringer et al. 2001

H. Böhringer MPE Seminar 24.11.2005 38

Isothermality of the ICM in the Halo of M87

Deprojected spectrum of the inner 2 arcmin radius region compared to isothermal and cooling flow models(Matsushita et al. 2001)

Deprojected Spectrum from the radial region 2-4 arcmin fit with isothermal (and two-temperature) models

Si

S

H. Böhringer MPE Seminar 24.11.2005 39

The Fe-L-Shell-Line Complex as a Thermometer

0.5 keV

1.0

1.5

2.0

2.5

3.0

TemperatureTX = 0.4 keV

H. Böhringer MPE Seminar 24.11.2005 40

The Fe-L-Shell-Line Complex as a Thermometer

0.5 keV

1.0

1.5

2.0

2.5

3.0

TemperatureTX = 0.6 keV

H. Böhringer MPE Seminar 24.11.2005 41

The Fe-L-Shell-Line Complex as a Thermometer

0.5 keV

1.0

1.5

2.0

2.5

3.0

TemperatureTX = 0.8 keV

H. Böhringer MPE Seminar 24.11.2005 42

The Fe-L-Shell-Line Complex as a Thermometer

0.5 keV

1.0

1.5

2.0

2.5

3.0

TemperatureTX = 1.0 keV

H. Böhringer MPE Seminar 24.11.2005 43

The Fe-L-Shell-Line Complex as a Thermometer

0.5 keV

1.0

1.5

2.0

2.5

3.0

TemperatureTX = 1.2 keV

H. Böhringer MPE Seminar 24.11.2005 44

The Fe-L-Shell-Line Complex as a Thermometer

0.5 keV

1.0

1.5

2.0

2.5

3.0

TemperatureTX = 1.4 keV

H. Böhringer MPE Seminar 24.11.2005 45

The Fe-L-Shell-Line Complex as a Thermometer

0.5 keV

1.0

1.5

2.0

2.5

3.0

TemperatureTX = 1.6 keV

H. Böhringer MPE Seminar 24.11.2005 46

The Fe-L-Shell-Line Complex as a Thermometer

0.5 keV

1.0

1.5

2.0

2.5

3.0

TemperatureTX = 1.8 keV

H. Böhringer MPE Seminar 24.11.2005 47

The Fe-L-Shell-Line Complex as a Thermometer

0.5 keV

1.0

1.5

2.0

2.5

3.0

TemperatureTX = 2.0 keV

H. Böhringer MPE Seminar 24.11.2005 48

The Fe-L-Shell-Line Complex as a Thermometer

0.5 keV

1.0

1.5

2.0

2.5

3.0

TemperatureTX = 2.4 keV

H. Böhringer MPE Seminar 24.11.2005 49

The Fe-L-Shell-Line Complex as a Thermometer

0.5 keV

1.0

1.5

2.0

2.5

3.0

TemperatureTX = 2.8 keV

H. Böhringer MPE Seminar 24.11.2005 50

The Fe-L-Shell-Line Complex as a Thermometer

The iron L-shell line blend as a function of temperature

H. Böhringer MPE Seminar 24.11.2005 51

Spectral Model for Cooling Flows

Reservoir

Thot

T1

T2

T3

T4

Steady State

• Spectrum of one temperature phase:

dTMmk

TdTdTdTL

dTTenthalpybolemissivity

demissivitydTdTL

p

B

bol

dtd

νν

ννν

νν

ν

25

)()()(

)()(

)()( )(

ΛΛ

=

=

• Full cooling flow spectrum :

TdTdTM

mkdL

hot

cutoff

T

T bolp

B ′′Λ

′Λ= ∫ )(

)(25 νμ

ν νν

&

H. Böhringer MPE Seminar 24.11.2005 52

Near Local Isothermality of the Cooling Core ICM

NH = 1.8 1020cm-2 (fix)

Thigh = 2.0 keV (fix)

Tlow = 1.44 keV (free)

M = < 2.4 Msun/yr[Böhringer et al. 2001, 2002; Matsushita 2002]

NH = 1.8 1020cm-2 (fix)

Thigh = 2.0 keV (fix)

Tlow = 0.01 keV (fix)

M = ~ 10 Msun/yr

Almost isothermal plasma

Classical „cooling flow“

XMM-PN spectrum from the radial zone 1´-2´ (outside the inner radio lobes)

H. Böhringer MPE Seminar 24.11.2005 53

Cooling Core Spectrum in the M87 Halo

XMM-PN spectrum from the radial zone 1´-2´ (outside the inner radio lobes) NH = 1.8 1020cm-2 (fix)

Thigh = 2.0 keV (fix)

Tlow = 1.0 keV (fix)

M = 1.9 Msun/yr

• Adopting a slightly too wide temperature range :

H. Böhringer MPE Seminar 24.11.2005 54

Cooling Flow Spectra in the M87 Halo

XMM-PN spectrum from the radial zone 1´-2´ (outside the inner radio lobes)

NH = 3.3 1021cm-2(free)

Thigh = 2.0 keV (fix)

Tlow = 0.01 keV (fix)

M = 2.2 Msun/yr

Energy range : >0.6 keV

• Using a higher interstellar column density (than allowed) :

H. Böhringer MPE Seminar 24.11.2005 55

Test for ICM Intrinsic Absorption Using the M87 Nucleus and Jet

nucleus jet

Both spectra can be well fitted by a power law spectrum with the galactic absorption value of NH ~ 2-4 1020 cm-2.

Upper limits for ΔNH ~ 3 1020 cm-2 for the nucleus and jet respectively.

MOS image

H. Böhringer MPE Seminar 24.11.2005 56

Constraints on the Absorption for the Nucleus and Jet in M87 (from XMM-PN)

from nucleus from the jet

The constraints for NH are close to the galactic value with ΔNH < 3 1020 cm-2 as compared to 3.8 1021 cm-2 required by the Allen et al. (2001) cooling flow model

H. Böhringer MPE Seminar 24.11.2005 57

Tests for intrinsic Absorption in the Perseus Cooling Flow by Means of the Nucleus of NGC

1275Spectral fits to the nuclear emission of NGC 1275 from CHANDRA observations

NH = 0.6 1020 cm-2 (free), Γ ~ 0.7 NH = 3.3 1021cm-2 (fix), Γ=1.2

H. Böhringer MPE Seminar 24.11.2005 58

XMM Observations of the X-ray Halo of M87

Böhringer et al. 2001

H. Böhringer MPE Seminar 24.11.2005 59

Metal Abundances in M87

1´ - 3´

8´ - 16´

Radial Zones :Normalized to solar abundances

Böhringer et al. 2001

Finoguenov, Matsushita, Böhringer, Arnaud 2002

H. Böhringer MPE Seminar 24.11.2005 60

Decomposition of the Metal Abundances into Contributions from SN Ia and SN II

SN Ia SN II

Fe/H (SN II) ~ 0.11Fe/H (SN II) ~ 0.11--0.15 Fe/H (SN Ia) ~ 0.4 0.15 Fe/H (SN Ia) ~ 0.4 –– 0.80.8

Woosley & Weaver 1995

Finoguenov, Matsushita, Böhringer et al. 2002 A&A 381, 21

Different deflagration models by Nomoto,Thielemann et al. 1997

Nomoto et al. 1997

H. Böhringer MPE Seminar 24.11.2005 61Finoguenov et al. 2000Finoguenov et al. 2000

In the outer regions the In the outer regions the mass of Fe in the ICM is mass of Fe in the ICM is dominated by the dominated by the contribution from SN II ! contribution from SN II !

SN Ia

SN II

[Si/Fe]

Radial Abundance Variations of Fe and Si

H. Böhringer MPE Seminar 24.11.2005 62

Ergebnisse

• Plasma temperatures• Element abundances• Thermal equilibrium conditions

H. Böhringer MPE Seminar 24.11.2005 63

O & Si Abundance Profiles in M87

The O profile is almost flat (consistent with a flat profile within +- 10 %)

The O/Si ratio increases from about 0.4 to 0.7 (from r = 2 – 50 kpc)

- (using MEKAL models)

Si

1-temp

O Si

Matsushita, Finoguenov, Böhringer 2003

2-temp

H. Böhringer MPE Seminar 24.11.2005 64

Origin of the Central Abundance Peak

Result from M87 (Matsushita et al. 2003) Gas mass inside r < 10 kpc

~ 2.9 109 Msun

Stellar mass loss ~2.5 10-11 LB Msun

~ 0.63 108 Msun / Gyr

Replenishment time ~ 3 Gyr

Cooling time ~ 1 Gyr (at 10 kpc)

• Central Fe peak (r < 2‘ ,10 kpc) ~ 7 106 Msun Fe (excess ~ 6 106 Msun Fe)

• SN Ia rate ~ SNU *10-12 * LB ~ 0.12 * 10-12 * 2.5 1010 ~ 0.003

• ΔM(Fe) ~ R(SN Ia) * 109 yr * 0.7 Msun(Fe) ~ 2.1 106 M(Fe)

Enrichment time ~ 3 Gyr Turatto et al. rate