1/18 Long-term Scenarios for Climate Change-Implications for Energy, GHG Emissions and Air Quality...

Post on 18-Dec-2015

213 views 0 download

Tags:

transcript

1/18

Long-term Scenarios for Climate Long-term Scenarios for Climate Change-Implications for Energy, Change-Implications for Energy,

GHG Emissions GHG Emissions and Air Quality and Air Quality

Shilpa Rao,International Institute of Applied Systems

AnalysisLaxenburg, Austria

Workshop on aspirational targets, Utrecht, Mar 5 2009

2/18

Trends in Long-TermTrends in Long-TermScenario DevelopmentScenario Development

• SRES scenarios (IPCC 2001) developed to SRES scenarios (IPCC 2001) developed to examine a range of economic and examine a range of economic and demographic development outcomes- demographic development outcomes- representative of uncertainty rangerepresentative of uncertainty range

• Scenarios broadly reflect policies that Scenarios broadly reflect policies that influence GHG emission drivers, such as influence GHG emission drivers, such as demographic change, social and economic demographic change, social and economic development, technological change, resource development, technological change, resource use, and pollution management. use, and pollution management.

• Recent long-term scenario development Recent long-term scenario development exercises are oriented towards examining exercises are oriented towards examining wide range of climate change outcomes –i.e. wide range of climate change outcomes –i.e. climate first thinkingclimate first thinking

Source: IAM Workshop, Vienna, 2008

Reference Concentration Pathway

• A joint community effort between Integrated A joint community effort between Integrated Assessment Modelers (IAMs) and Earth System Assessment Modelers (IAMs) and Earth System Modelers (ESMs)Modelers (ESMs)

• Participation of experts from air pollution and climate, for gridded level inventory data and climate model runs

• Models need to model all radiative forcing factors (full suite of GHGs, aerosols, chemically active gases, and land use/land cover)

• Scenarios extend to 2300• Produce data at higher resolution for

experimental climate change and atmospheric chemistry projections

4/18

Emissions Pathways

Table 1.1: Overview of Representative Concentration Pathways (RCPs) 1 Description1 Publication – IA Model RCP8.5 Rising radiative forcing pathway leading to 8.5 W/m2

in 2100. Riahi et al. (2007) – MESSAGE

RCP6 Stabilization without overshoot pathway to 6 W/m2 at stabilization after 2100

Fujino et al. (2006) and Hijioka et al. (2008) – AIM

RCP4.5 Stabilization without overshoot pathway to 4.5 W/m2 at stabilization after 2100

Clarke et al. (2007) – MiniCAM

RCP3-PD2 Peak in radiative forcing at ~ 3 W/m2 before 2100 and decline

van Vuuren et al. (2006, 2007) – IMAGE

2

5/18

Integrated Scenario Analysis at IIASA• Explore uncertainty of long-term development

under climate constraints through limited set of scenarios (3):A2r, B2, B1

• Scenario taxonomy (H/M/L) based on:-- emissions,-- vulnerability, -- stabilization levels,

• Integration: energy – agriculture – forestry sectors• Multi-gas analysis• Assess also implications of stabilization:

-- technology choice (e.g. efficiency vs. supply)-- sectorial measures (which gas, when, where)-- economics (costs and savings) -- geopolitics of energy (winners/losers)

6/18

Riahi, et al. 2007Riahi, et al. 2007Riahi, et al. 2007Riahi, et al. 2007

IIASA Integrated Assessment FrameworkIIASA Integrated Assessment Framework

GHG EmissionsIndustry, Energy, and Land-based Mitigation

Deforestation & Afforestation(modeled on 0.5 x 0.5)

7/18

Scenario Overview (World by 2100)

2000 A2R B2 B1

Population, 109 6 12 10 7GDP, 1012$ 27 189 238 328PE, EJ 402 1744 1274 1045GtC energy 7 27 14 7GtC forests 1 <1 -1 -1GtC-e all others 3 8 5 4GtC-e total 11 35 19 10ppmv (CO2-equiv) 370 1432 976 831

Stabil. Levels (ppm-equiv) 670-1350 490-680 490-680

8/18

0%

20%

40%

60%

80%

100%

1850 1900 1950 2000

Evolution of Global Primary EnergyHistorical Development

Biomass (including Non-Commercial)

Coal

Oil

NuclearRenewables

Gas

9/18

0%

20%

40%

60%

80%

100%

1850 1900 1950 2000

Evolution of Global Primary EnergyHistorical Development

Coal

Oil

Nuclear

Renewables

Gas

Biomass (including Non-Commercial)

10/18

0%

20%

40%

60%

80%

100%

1850 1900 1950 2000

Evolution of Global Primary EnergyHistorical Development

Biomass (including Non-Commercial)

Coal

Oil

Nuclear

Renewables

Gas

11/18

0%

20%

40%

60%

80%

100%

1850 1900 1950 2000 2050 2100

Evolution of Global Primary EnergyA2r GGI Scenario

Biomass (including Non-Commercial)

Coal

Oil

Nuclear

Renewables

Gas

12/18

0%

20%

40%

60%

80%

100%

1850 1900 1950 2000 2050 2100

Evolution of Global Primary EnergyB2 GGI Scenario

Biomass (including Non-Commercial)

Coal

Oil

Nuclear

RenewablesGas

13/18

0%

20%

40%

60%

80%

100%

1850 1900 1950 2000 2050 2100

Evolution of Global Primary EnergyB1 GGI Scenario

Biomass (including Non-Commercial)

Coal

Oil

RenewablesGas

Nuclear

14/18

0

100

200

300

400

500

600

700

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

EJ -300700

2EJ

Hydrogen (allsources)

Biomass ethanol

Fossil methanol& liquids.

Non conv. oil

Conventional oil

Global Liquids SupplyA2r Scenario

15/18

Global Liquids SupplyA2r Scenario

0

100

200

300

400

500

600

700

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

EJ -300700

2EJ

Hydrogen (allsources)

Biomass ethanol

Fossil methanol& liquids.

Non conv. oil

Conventional oil

16/18

Global Liquids SupplyA2r Scenario

0

100

200

300

400

500

600

700

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

EJ -300700

2EJ

Hydrogen (allsources)

Biomass ethanol

Fossil methanol& liquids.

Non conv. oil

Conventional oil

17/18

Global Liquids SupplyA2r Scenario

0

100

200

300

400

500

600

700

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

EJ -300700

2EJ

Hydrogen (allsources)

Biomass ethanol

Fossil methanol& liquids.

Non conv. oil

Conventional oil

18/18

Global Liquids SupplyB1 Scenario

0

100

200

300

400

500

600

700

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

EJ -300700

2EJ

Hydrogen (allsources)

Biomass ethanol

Fossil methanol& liquids.

Non conv. oil

Conventional oil

19/18

Global Liquids SupplyB1 Scenario

0

100

200

300

400

500

600

700

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

EJ -300700

2EJ

Hydrogen (allsources)

Biomass ethanol

Fossil methanol& liquids.

Non conv. oil

Conventional oil

20/18

Global Liquids SupplyB1 Scenario

0

100

200

300

400

500

600

700

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

EJ -300700

2EJ

Hydrogen (allsources)

Biomass ethanol

Fossil methanol& liquids.

Non conv. oil

Conventional oil

21/18

Global Liquids SupplyB1 Scenario

0

100

200

300

400

500

600

700

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

EJ -300700

2EJ

Hydrogen (allsources)

Biomass ethanol

Fossil methanol& liquids.

Non conv. oil

Conventional oil

22/18

Climate Stabilization Scenarios

Climate Sensitivity ~2.5 degrees

0

200

400

600

800

1000

1200

1400

1600

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

CO

2 e

qu

iv.c

on

cen

trat

ion

(pp

mv)

A2_BL

A2_1390

A2_1090

A2_970

A2_820

A2_670

B2_BL

B2_670

B2_480

B1_BL

B1_670

B1_590

B1_520

B1_480

23/18

Emissions & Reduction MeasuresPrincipal technology clusters – 1390 ppm target

0 50 100 150 200 250 300 350

Demand reduction

Nuclear

Renewables

Bioenergy carbon capture

CH4

F- gases

Cumulative contribution to mitigtion (2000 - 2100), GtC eq.

A2r

B2

B1

24/18

Emissions & Reduction MeasuresPrincipal technology clusters – 1090 ppm target

0 50 100 150 200 250 300 350

Demand reduction

Nuclear

Renewables

Bioenergy carbon capture

CH4

F- gases

Cumulative contribution to mitigtion (2000 - 2100), GtC eq.

A2r

B2

B1

25/18

Emissions & Reduction MeasuresPrincipal technology clusters – 970 ppm target

0 50 100 150 200 250 300 350

Demand reduction

Nuclear

Renewables

Bioenergy carbon capture

CH4

F- gases

Cumulative contribution to mitigtion (2000 - 2100), GtC eq.

A2r

B2

B1

26/18

Emissions & Reduction MeasuresPrincipal technology clusters – 820 ppm target

0 50 100 150 200 250 300 350

Demand reduction

Nuclear

Renewables

Bioenergy carbon capture

CH4

F- gases

Cumulative contribution to mitigtion (2000 - 2100), GtC eq.

A2r

B2

B1

27/18

Emissions & Reduction MeasuresPrincipal technology clusters – 670 ppm target

0 50 100 150 200 250 300 350

Demand reduction

Nuclear

Renewables

Bioenergy carbon capture

CH4

F- gases

Cumulative contribution to mitigtion (2000 - 2100), GtC eq.

A2r

B2

B1

28/18

Emissions & Reduction MeasuresPrincipal technology clusters – 480 ppm target

0 50 100 150 200 250 300 350

Demand reduction

Nuclear

Renewables

Bioenergy carbon capture

CH4

F- gases

Cumulative contribution to mitigtion (2000 - 2100), GtC eq.

A2r

B2

B1

29/18

Contribution by GHG to Mitigation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

400600800100012001400

CO2eq concentration in 2100, ppm

Sha

re o

f cu

mul

ativ

e em

issi

on r

educ

tion

by G

HG

CO2

CH4

N2OF-gases

A2r B1

30/18

Contribution by Sector to Mitigation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

400600800100012001400

CO2eq concentration in 2100, ppm

Sha

re o

f cu

mul

ativ

e em

issi

on r

educ

tion

by s

ecto

r

Energy and Industry

Agriculture

Forestry

A2r B1

31/18

Baseline ScenariosPrimary Energy per Capita

32/18

33/18

34/18

35/18

36/18

37/18

Baseline ScenariosEmission Intensity

38/18

39/18

40/18

41/18

42/18

43/18

A2rClimate Policy-670 ppm CO2eq.

44/18

Electricity GenerationWestern Europe, A2r_670

0

30

60

90

120

150

180

1990

2000

2005

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

EJ

Decentr

Biomass

RenElec

Nuclear

Gas

Oil

Coal_advanced

Coal_old

45/18

Electricity GenerationCentrally Planned Asia, A2r_670

0

30

60

90

120

150

180

1990

2000

2005

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

EJ

Decentr

Biomass

RenElec

Nuclear

Gas

Oil

Coal_advanced

Coal_old

46/18

Transport SectorCentrally Planned Asia A2r_670

0

10

20

30

40

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

EJ

Hydrogen

Electricity

Synliquids

Oil

47/18

Residential SectorCentrally Planned Asia, A2r_670

0

10

20

30

40

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

EJ

Decentr

Grids

Liquids

Solids

48/18

NOX Emissions, A2r scenario Western Europe

0

4

8

12

16

20

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Tg N

Ox

Agriculture and Land UseChangeResidential

Industry

Power Plants

International Shipping

Transport

49/18

NOX Emissions, A2r scenario China

0

4

8

12

16

20

24

28

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Tg N

Ox

Agriculture and Land UseChangeResidential

Industry

Power Plants

International Shipping

Transport

50/18

BC Emissions, A2r

• In industrialized In industrialized countries emissions countries emissions decline in transport and decline in transport and industrial sectors, due industrial sectors, due to stringent regulations, to stringent regulations, technology technology improvement and fuel improvement and fuel switching (synthetic switching (synthetic fuels, hydrogen)fuels, hydrogen)

• In developing countries, In developing countries, there is a shift from there is a shift from traditional fuels to gas traditional fuels to gas and liquid-based and liquid-based systems in the systems in the residential sectorresidential sector

0

0.5

1

1.5

2

2.5

3

2000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Tg

BC

Industry Residential Transport

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Tg

BC

Industry Residential Transport

51/18

Long-term development of Emissions

• Due to technology Due to technology improvements and improvements and shifts to natural gas shifts to natural gas based fuels, intensity based fuels, intensity of fossil fuel and of fossil fuel and biomass related biomass related emissions declines emissions declines over timeover time

• Decoupling of Decoupling of pollutant emissions pollutant emissions from CO2from CO2

0

0.05

0.1

0.15

0.2

0.25

0.3

2000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

g/M

J

SO2

Carbonaceousaerosols

NOX

0

2

4

6

8

10

12

14

16

18

2000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

kg/to

nC

SO2

Carbonaceousaerosols

NOX

52/18

Co-benefits of climate mitigation,CPA A2_670SO2, NOX

0

5

10

15

20

25

30

35

40

45

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Tg S

O2

A2r baseline

A2r - 670

0

5

10

15

20

25

30

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Tg N

OX

A2r - Baseline

A2r_670

53/18

2000

Proportional scaling

Exposure driven

54/18

2030

Proportional scaling

Exposure driven

55/18

2050

Proportional scaling

Exposure driven

56/18

2070

Proportional scaling

Exposure driven

57/18

2100

Proportional scaling

Exposure driven

58/18

Concluding Thoughts

• Current trends in long-term scenario development include detailed technological information for climate policy analysis

• Include detailed information on air pollutants developed with the AP community-albeit so far for the CMC

• Possibility to provide useful support to air pollution community and contribute to issues of co-benefits

• Possible in future to examine wide range of issues related to air quality- for example pollution related health impacts