23 o CONGRESSO BRASILEIRO DE NEMATOLOGIA March 14, 2001 Howard Ferris Department of Nematology

Post on 24-Jan-2016

20 views 0 download

Tags:

description

Nematode Population Dynamics and Economic Thresholds Dinâmica das Populações de Nematóides e Níveis de Dano Econômico. 23 o CONGRESSO BRASILEIRO DE NEMATOLOGIA March 14, 2001 Howard Ferris Department of Nematology University of California, Davis. - PowerPoint PPT Presentation

transcript

Nematode Population Dynamics and Economic Thresholds

Dinâmica das Populações de Nematóides e Níveis de Dano Econômico

23o CONGRESSO BRASILEIRO DE NEMATOLOGIA

March 14, 2001

Howard FerrisDepartment of Nematology

University of California, Davis

Basic components of the dynamics of populations:

• Birth and death rates

• Development and senescence rates

• Population size

• Density dependence– resource availability

• Predator pressure

Birth Rates

• Intrinsic factors– oocytes and sperm– age effects

• Extrinsic factors– resource availability– mate availability– temperature

Sex Ratios and Multiple Mating Effects

0

2000

4000

0 50 100Pi

Pf

1:1 F:M

0.3:0.7 F:M

0.7:0.3 F:M

•C. elegans produces 4x more eggs when multiple-mated than by hermaproditism.

•Females of Heterodera attract and are mated by several males

•R. pellio male does not supply sufficient sperm to fertilize all oocytes from a single female

Consequences of Multiple Mating

•Probability that female genes are perpetuated is increased•Population may increase at a greater rate when there are fewer females and more males

Rhabditis pellio

0

50

100

150200

250

300

350

400

3 5 7 9Male Age

Egg

s fe

rtili

zed Total sperm = 884

Female produces 600 oocytesOnly 150 fertilized at a single mating

0

20

40

60

80

100

120

3 4 5 6 7 8 9 10Age (days)

Ag

e-s

pe

cifi

c R

ep

rod

uct

ion

N2

clk-1

age-1

Caenorhabditis elegans

Chen, Carey and Ferris (2001), Expt. Gerontology 36:431-440

0

100

200

300

400

0 8 16 24 32 40 48

Lifetime egg production

wild type

0

100

200

300

400

0 8 16 24 32 40 48LIFESPAN (days)

age-1

Chen, Carey and Ferris (2001), Expt. Gerontology 36:431-440

Death Rates

• Intrinsic factors– natural longevity– relationships of fecundity and longevity

• Extrinsic factors– resource availability– environmental extremes– predation– management

8 1 6 2 4 3 2 4 0 4 8 0A G E ( d a y s )

80 eggs/day40-79 eggs/day1-39 eggs/day0 eggs/day

C. elegans wild type

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 8 1 6 2 4 3 2 4 0 4 8

A G E ( d a y s )

l xw i l d t y p ec l k - 1a g e - 1

NU

MB

ER

AL

IVE 24

48

0 8 16 24 32 40 48 0

AGE (days)

Chen, Carey and Ferris (2001), Expt. Gerontology 36:431-440

Many types of models represent our understanding of the dynamics of populations….

• Continuous and discrete time models– differential equations and time steps– understand behavior through calculus or sensitivity

analysis• Age and stage structured models• Deterministic and stochastic models• Individual and event-based models

– time steps or event steps

Models with parameters related to properties of the organisms are usually more satisfying to biologists than equations that draw lines through points on a graph

Continuous time models Nt=N0ert, Nt=N0 t

dN/dt=rN

r=dNt/Ntdt (growth rate/indiv.)

=er (pop. growth/unit time)

0

2000

4000

6000

0 200 400 600 800N0

Nt

0

200

400

600

800

0 20 40 60 80 100Time

Nt

Continuous time models Nt=N0ert, Nt=N0 t

dN/dt=rN

r=dNt/Ntdt (growth rate/indiv.)

=er (pop. growth/unit time)

0

2000

4000

6000

0 200 400 600 800N0

Nt

0

200

400

600

800

0 20 40 60 80 100Time

Nt

2

4

6

8

10

0 200 400 600N0

Nt /N

0

Seasonal Multiplication:

Nt/N0=ert

Nt/N0=aN0b, Nt=aN0

(b+1)

0

5

10

0 2 4 6 8 10Ln Initial Population (Pi) Sep 99

Ln F

inal

Pop

ulat

ion

(Pf)

Pf=(75/-Ln0.993)(1-0.993Pi)

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10Ln(Pi) Sep 99

Mul

tiplic

atio

n R

ate

(Pf/

Pi)

Pf/Pi=1018 Pi-0.71, r2=0.71

Pf/Pi=(400/-Ln0.90)(1-0.90Pi)/Pi

dN/dt=rN(1-N/K) Nt=K/(1+((K/N0-1)(e-rt))

dP/dt=aP(1-P/E) Pf=aEPi/((a-1)Pi+E) Pf=(a/-Lnq)(1-qPi)

Multiplication RatePf/Pi=((a/-Lnq)(1-qPi))/Pi

0

100

200

300

400

500

0 2 4 6 8 10

Ln(Pi) Sep 99

Mul

tiplic

atio

n R

ate

(Pf/

Pi)

for PiPf/Pi=325, else

Pf/Pi=1018 Pi-0.71, r2=0.71

Kim and Ferris (2001)

Meloidogyne arenaria - oriental melon

Seasonal population change

Discrete time models

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Soil Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

0.015 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84

Soil Moisture (bars)

Ra

te

Discrete time models

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Soil Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

0.015 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84

Soil Moisture (bars)

Ra

te

0

0.2

0.4

0.6

0.8

1

1.2

0.015 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84

Soil Moisture (bars)

Ra

te

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Soil Temperature

Rat

e

Discrete time models

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Soil Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

0.015 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84

Soil Moisture (bars)

Ra

te

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

0.015 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84

Soil Moisture (bars)

Ra

te

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Soil Temperature

Rat

e

Discrete time models

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Soil Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

0.015 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84

Soil Moisture (bars)

Ra

te

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

0.015 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84

Soil Moisture (bars)

Ra

te

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Soil Temperature

Rat

e

Discrete time models

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Soil Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

0.015 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84

Soil Moisture (bars)

Ra

te

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

0.015 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84

Soil Moisture (bars)

Ra

te

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Soil Temperature

Rat

e

Discrete time models

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Soil Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

0.015 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84

Soil Moisture (bars)

Ra

te

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Temperature

Rat

e

0

0.2

0.4

0.6

0.8

1

1.2

0.015 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84

Soil Moisture (bars)

Ra

te

0

0.2

0.4

0.6

0.8

1

1.2

10 C 15 C 20 C 25 C 30 C 35 C

Soil Temperature

Rat

e

0

50

100

150

200

250

0 10 20 30 40 50

Days

EggsJ2J3J4Ad

Discrete time models

0

50

100

150

200

250

0 10 20 30 40 50

Days

EggsJ2J3J4Ad

0

100

200

300

400

500

600

0 10 20 30 40 50

Days

Tot

al (

all s

tage

s)

0

100

200

300

400

500

600

0 10 20 30 40 50

Days

Tot

al (

all s

tage

s)Statistical Models

Crop Yield in Relation to Nematode Population Density

Total harvest

0

0.2

0.4

0.60.8

1

1.2

0 2 4 6 8 10Ln (Pi+1)

Rel

ativ

e Y

ield

Late season

0

0.20.4

0.6

0.81

1.2

0 2 4 6 8 10Ln (Pi+1)

Rel

ativ

e Y

ield

Early season

00.20.40.60.8

11.2

0 2 4 6 8 10Ln (Pi+1)

Re

lativ

e Y

ield

Kim and Ferris (2001)

A: Early seasonY = 0.43+0.57*0.998Pi, ym=19743

B: Late seasonY = 0.03+0.97*0.998Pi, ym=10170

C: Total harvestY = 0.50+0.50*0.999Pi, ym=12312

A B

C

Oriental melon - Meloidogyne arenaria

050000

100000150000200000250000300000

0 10 20 30 40 50 60Pi Sep 99

Val

ue L

oss

(WO

N)

Early

Late

Total

0

100000

200000

300000

400000

0 10 20 30 40 50 60Pi Sep 99

Val

ue L

oss

(WO

N)

Early

Late

Total

Crop Value Panel A Panel BEarly Harvest 2019 won/kg 967 won/kgLate Harvest 967 won/kg 2019 won/kg

A

B

Kim and Ferris (2001)

That initial population at which the loss in value due to nematode damage is equal to the cost of nematode management

The Economic Threshold

That initial population at which the difference in crop value with and without management is equal to the cost of the management

The Economic Threshold amended

That initial population level at which net returns become zero

Profitability Limit constraint

Management Efficacy = 90%

7.055.54.3

0

200

400

600

800

0 2 4 6 8Ln (Pi+1)

Ne

t Re

turn

s ET = 74PL1 = 245PL2 = 1153

Management Efficacy = 100%

4.15 5.5

0

200

400

600

800

0 2 4 6 8

Ln (Pi+1)

Net

Ret

urns

ET = 63PL1 = 245

Fixed Cost Economic Threshold

0

100

200

300

400

500

600

0 2 4 6 8 10Nematode Population (Ln)

Net

Ret

urns

($)

Continuous Model Optimization

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10log2 Pi

$

a = 15b = 50

Pi = 550m = 0.1T = 50z = 0.999

$max = 1000E.T. = 110

Discrete Model

0

200

400

600

800

1000

1200

0 2 4 6 8 10log2 Pi

$

a = 600Pi = 200m = 0.1T = 20z = 0.99

$max = 1000E.T. = 78.48428

Optimized Discrete Model

Seasonal Multiplication Rates (Host Crop)

0

100

200

300

400

500

0 500 1000 1500 2000

Pi

Pf/P

ia = 500b = -0.2

amax = 500p = 1q = -0.1s = 0.65

Overwinter Survival Rates

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000Pf1

Pi2

/Pf1

a = 500b = -0.2

amax = 500p = 1q = -0.1s = 0.65

Annual Population Change (Host Crop)

0

20000

40000

60000

80000

100000

120000

0 500 1000 1500 2000Pi1

Pi1

* (

Pi2

/Pi1

)a = 500b = -0.2

amax = 500p = 1q = -0.1s = 0.65

Annual Population Change (Non-host)

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000Pi(t)

Pi(t

+x)

Pi1

Pi2

Pi3a = 500b = -0.2

amax = 500p = 1q = -0.1s = 0.65

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6 7 8

Years After Planting Host Crop

Pi(t

+x)

a = 300b = 0.6s = 0.4

Pi(0) = 70

Population Convergence

0

1000

2000

3000

0 5 10 15Year

Po

pu

lati

on

Le

vel

0NHR

2NHR

4NHR

6NHR

Optimum Rotation Length

-200

-100

0

100

200

300

0 1 2 3 4 5 6 7 8 9 10

Years of Non-host

Ave

. An

nu

al R

etu

rns

($

)

Perennial Crop Considerations

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Days

Mes

ocric

onem

a xe

nopl

ax

Lovell

Nemaguard

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000 14000

Degree-Days

Mes

ocric

onem

a xe

nopl

ax

Year 1

0

20

40

60

80

100

0 1000 2000 3000DD

AU

C LU

LT

NU

NT

Year 2

02000400060008000

1000012000

0 1000 2000 3000DD

AU

C LU

LT

NU

NT

Year 3

05000

1000015000200002500030000

0 1000 2000 3000DD

AU

C LU

LT

NU

NT

Year 4

05000

1000015000200002500030000

0 1000 2000 3000DD

AU

C LU

LT

NU

NT

Year 1

0

20

40

60

80

100

0 1000 2000 3000DD

AU

C LU

LT

NU

NT

Year 2

02000400060008000

1000012000

0 1000 2000 3000DD

AU

C LU

LT

NU

NT

Year 3

05000

1000015000200002500030000

0 1000 2000 3000DD

AU

C LU

LT

NU

NT

0

2

4

6

8

10

12

Year 2 Year 3 Year 4 Year 5

Co

eff

icie

nt

LT-Full

LT-S/F

LU-Full

LU-S/F

NT-Full

NT-S/F

NU-Full

NU-S/F

0

10

20

30

40

0 20 40 60 80 100AUC

Alfl

afa

Yie

ld L

oss y=1.15+0.37x, r2=0.89

0

20

40

60

80

0 2000 4000DD

Are

a U

nder

Cur

ve

Pi2170

Pi4

Pi43

Pi434

Noling and Ferris(1987)

References

Burt, O. R. and H. Ferris. 1996. Sequential decision rules for managing nematodes with crop rotations. J. Nematology 28:457-474.

Chen, J., J.R. Carey and H. Ferris. 2001. Comparative demography of isogenic populations of Caenorhabditis elegans Expt. Gerontology 36:431-440.

Ferris, H. 1978. Nematode economic thresholds: derivation, requirements and theoretical considerations. J. Nematology 10:341-350.

Ferris, H. 1985. Density-dependent nematode seasonal multiplication and overwinter survivorship: a critical point model. J. Nematology 17:93-100.

Hsin, H. and C. Kenyon. 1999. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399:362-366.

Kim D.G. and H. Ferris. 2001. Relationship between crop losses and initial population densities of Meloidogyne arenaria in winter-grown oriental melon in Korea. J. Nematology (subm.)

Noling, J.W. and H. Ferris. 1987. Nematode-degree days, a density-time model for relating epidemiology and crop losses in perennials. J. Nematology 19:108-118.

Seinhorst, J.W. 1965. The relationship between nematode density and damage to plants. Nematologica 11:137-154.

Seinhorst, J.W. 1967. The relationship between population increase and population density in plant parasitic nematodes. II. Sedentary nematodes. Nematologica 13:157-171.

Somers, J.A., H.H. Shorey and L.K. Gaston. 1977. Reproductive biology and behavior of Rhabditis pellio (Schneider) (Rhabditida:Rhabditidae). J. Nematology 9:143-148.

More information:http://plpnemweb.ucdavis.edu/nemaplex/nemaplex.htm