4/24/2002Ulrich Heintz - NEPPSR 20021 The Standard Model Ulrich Heintz Boston University NEW ENGLAND...

Post on 20-Jan-2016

225 views 0 download

transcript

4/24/2002 Ulrich Heintz - NEPPSR 2002 1

The Standard Model

Ulrich HeintzBoston University

NEW ENGLAND PARTICLE PHYSICS STUDENT RETREAT

  North Woodstock, New Hampshire    August 18-23, 2002

 

4/24/2002 Ulrich Heintz - NEPPSR 2002 2

wanteda unified theory to explain

the fundamental constituents of matterquarks & leptons

their interactionsgravityelectromagnetismweak interactionstrong interaction

4/24/2002 Ulrich Heintz - NEPPSR 2002 3

Outlinethe standard modelexperimental confirmationprecision measurementsdoes it fit?future prospectsare we done?summary

4/24/2002 Ulrich Heintz - NEPPSR 2002 4

internal symmetriesall particles have three internal symmetries

U(1) invarianceweak hypercharge Y=2(Q-T3)

gauge boson B - coupling = g1

SU(2) invariance weak isospin T3

gauge bosons W+ W0 W- - coupling = g2

SU(3) invariancecolor

gauge bosons G1...8 (gluons) - coupling = g3

4/24/2002 Ulrich Heintz - NEPPSR 2002 5

principle of local gauge invarianceglobal gauge transformations

observables can only depend on ||2

theory is invariant under ’= e-i U(1) and ’ satisfy the Schrödinger equation

local gauge transformations to get invariance under (x,t) ~(x,t) = e-i(x,t) (x,t) replace

electromagnetic interaction spin 1 particle photon (gauge boson)

ti

m

2

2

1

ieVtt

Aie

4/24/2002 Ulrich Heintz - NEPPSR 2002 6

electroweak mixingneutrinos have no electromagnetic

interactions U(1) cannot be the electromagnetic U(1) define electromagnetic field A / g2 B + g1 W0

the orthogonal combination is Z0 / -g1 B + g2 W0

or with g1 / sinw and g2 / cosw

there must be a neutral current interaction mediated by the Z0 boson

wwe

ww

ww

ggg

W

B

Z

A

sincos4

cossin

sincos

21

00

4/24/2002 Ulrich Heintz - NEPPSR 2002 7

particle massesexplicit mass terms break SU(2) symmetryHiggs mechanism

add complex scalar field

SU(2) doublet, SU(3) singlet

3 components absorbed by W§ and Z0

1 physical particle Higgs boson H0

couplings to fermions fermion masses

43

210 2

1

i

i

4/24/2002 Ulrich Heintz - NEPPSR 2002 8

Higgs potential ground state degenerate at finite

carries SU(2) and U(1) quantum numbers SU(2) and U(1) symmetries spontaneously broken invariant under U(1)EM photon massless

V()

3

1,2,4

spontaneous symmetry breaking

v

0

2

10

4/24/2002 Ulrich Heintz - NEPPSR 2002 9

Glashow-Weinberg-Salam modelthree massive bosons: W+,Z0,W-

one massless boson:

unifies weak and electromagnetic forces

W

e

e

W

e

eZ0

e,e

e,e

22Wg

22Wg

2Zg

e

e

eg

wZWewwZwW MMggg 222 cos4cossinsin

4/24/2002 Ulrich Heintz - NEPPSR 2002 10

parity violation in weak interactionshandedness

W couples only to lefthanded particles

lefthanded

righthanded

W-e e-

W- ee-

4/24/2002 Ulrich Heintz - NEPPSR 2002 11

Glashow-Weinberg-Salam modelW couples only to lefthanded fermion doublets

Z couples differently to left/righthanded fermions

couples equally to left/righthanded fermions

LLLeLLL

e

b

t

s

c

d

u

wRwL

wRwL

wRwL

RL

ccd

ccu

cc

cc

22

22

22

sin3

2sin

3

21

sin3

4sin

3

41

sin2sin21

01

all left-handed fermions are SU(2) doublets

all right-handed fermions are SU(2) singlets

all left-handed fermions are SU(2) doublets

all right-handed fermions are SU(2) singlets

4/24/2002 Ulrich Heintz - NEPPSR 2002 12

Quantum Chromo Dynamicsgauge theory of the strong

interactions 8 massless gauge bosons (gluons)

g

q

q

3gg

g

g

all leptons are SU(3) singlets

all quarks are SU(3) triplets

all leptons are SU(3) singlets

all quarks are SU(3) triplets

4/24/2002 Ulrich Heintz - NEPPSR 2002 13

standard modelinput parameters of the standard model

3 gauge couplings: gU(1) gSU(2) gSU(3)

1 Higgs vev: v or MZ or MW

9 fermion masses: me m m mu md ms mc mb mt

4 CKM parameters: 1 2 3

1 Higgs mass: MH or 18 free parametersneutrino masses and mixing parameters

4/24/2002 Ulrich Heintz - NEPPSR 2002 14

Outlinethe standard modelexperimental confirmationprecision measurementsdoes it fit?future prospectsare we done?summary

4/24/2002 Ulrich Heintz - NEPPSR 2002 15

experimental confirmationweak neutral currents

observed at CERN in 1973

ratio of rates depends on

“charged current”

e e

“neutral current”

Z0

e e

4.0sin

cos

2

w

wW

Z

g

g

4/24/2002 Ulrich Heintz - NEPPSR 2002 16

experimental confirmation

e+e-

e- e+e-

4/24/2002 Ulrich Heintz - NEPPSR 2002 17

experimental confirmationvector boson masses

prediction

observed at CERN in 1983

GeV 93sin

1

24sin

8

2

2

2

1

2

2

wF

W

wW

W

WF

GM

g

M

gG

GeV 590

GeV 580

Z

W

M

M

4/24/2002 Ulrich Heintz - NEPPSR 2002 18

Outlinethe standard modelexperimental confirmationprecision measurements

properties of the Z boson ( e+e- colliders) properties of the W boson ( pp colliders) the top quark neutrino couplings ( fixed target experiment)

does it fit?future prospectsare we done?summary

4/24/2002 Ulrich Heintz - NEPPSR 2002 19

LEP/SLDcolliding e+ and e- beamsbeam energy ¼ 46 GeVproduce Z0 bosons

LEP 4 detectors: ALEPH, DELPHI, L3, OPAL recorded 17£ 106 Z0 decays (1990 – 1995)

SLC SLD detector recorded 550,000 Z0 decays (1993 – 1998)

Z0

e

e

4/24/2002 Ulrich Heintz - NEPPSR 2002 20

Large Electron-Positron collider at CERN

8.5 km

L3

Aleph

Delphi

Opal

CERN

4/24/2002 Ulrich Heintz - NEPPSR 2002 21

Stanford Linear Collider

¼ 1.5 km

SLD

4/24/2002 Ulrich Heintz - NEPPSR 2002 22

Z0 lineshape measurementsZ0 lineshape

MZ=91.1876±0.0021 GeV

Z = 2.4952±0.0023 GeV

h = 41.541±0.037 nb

Re=had/ee=20.804±0.050

R=had/=20.785±0.033

R=had/=20.764±0.045

consistent with lepton universality

4/24/2002 Ulrich Heintz - NEPPSR 2002 23

partial widths of Z0

visible decay modes had = 1744.4±2.0 MeV

ℓℓ = 83.984±0.086 MeV

invisible width inv = Z -had -3£ℓℓ =499.0±1.5 MeV

inv/ℓℓ = 5.942±0.016

standard model prediction /ℓℓ = 1.9912±0.0012

3 light neutrinos

4/24/2002 Ulrich Heintz - NEPPSR 2002 24

many ways to measure sin2 w

left/right asymmetry ALR

Z couples differently to left/right handed fermions expect parity violating asymmetry

couplings depend on sin2w ALR depends on sin2w

only possible at SLC (e- polarization ¼ 75%)

0

RL

RLLRA

Z0 e-e+ Z0 e-e+

L R

4/24/2002 Ulrich Heintz - NEPPSR 2002 25

many ways to measure sin2 w

forward/backward asymmetries

requires no beam polarization

depends on sin2wBF

BFFBA

Z0 e-e+

Z0 e-e+

forward backward

L L

L R

R R

R L

F B

4/24/2002 Ulrich Heintz - NEPPSR 2002 26

many ways to measure sin2 w

sin2eff

differs from sin2w by radiative corrections

agreement between all measurements

4/24/2002 Ulrich Heintz - NEPPSR 2002 27

radiative correctionsthe gauge sector of the standard model

is determined (at tree level) by sin2 w , MZ, ) gW, gZ, MW, AFB,...

loops introduce additional dependencies

MW = MWtree (1 + O(mt

2) + O(logmH))similarly for other quantities

W W

t

b

W W

H0

4/24/2002 Ulrich Heintz - NEPPSR 2002 28

precision measurementsglobal electroweak fit

are all measurements consistent with one set of parameters?

all Z-pole data:

%)12(

10/3.15

GeV 033.0372.80

00063.022315.0sin

GeV 82

GeV 10171

2

2

10941 dof

M

m

m

W

w

H

t

4/24/2002 Ulrich Heintz - NEPPSR 2002 29

what about the W?W§ is charged

cannot produce (singly) in e+ e- collisions need beam energy > MW for e+e-! W+W-

hadron colliders...

4/24/2002 Ulrich Heintz - NEPPSR 2002 30

Tevatron at Fermilabcolliding p and p beamsbeam energy ¼ 900 GeVproduce W§ and Z0 bosons and more...2 detectors: CDF and DØbetween 1992 and 1995

recorded 105 W and 104 Z0 decays

4/24/2002 Ulrich Heintz - NEPPSR 2002 31

Tevatron at Fermilab

2 km

DØCDF

4/24/2002 Ulrich Heintz - NEPPSR 2002 32

CDF Detector

installation of silicon detector in CDF, 2001

4/24/2002 Ulrich Heintz - NEPPSR 2002 33

DØ Detector

DØ detector installed in the Collision Hall, January 2001

4/24/2002 Ulrich Heintz - NEPPSR 2002 34

DØ detector

4/24/2002 Ulrich Heintz - NEPPSR 2002 35

protons/antiprotons are not elementary de Broglie wavelength of 900 GeV

protons

quark-antiquark and quark-gluon scattering W

hadron colliders

m10 proton theof size m10 15-18

E

hc

u

u

d

u

u

d

4/24/2002 Ulrich Heintz - NEPPSR 2002 36

W and Z production in proton-antiproton collisions

W or Z are not the only particles produced underlying event

quarks have a distribution of momenta W or Z momentum not known

u and d quarks participate both W and Z can be produced

hadron colliders

Z0

u

uW

u

d

parton distribution functions

4/24/2002 Ulrich Heintz - NEPPSR 2002 37

W and Z decays

hadron colliders

W! ud, cs 68.5% swamped by pp! qq, gg

W! 10.5% !/e/+’s

W! 10.5% momentum resolution

W! e 10.5% best

Z! qq 69.9% swamped by pp! qq, gg

Z! 20.0% invisible

Z!+ - 3.4% !/e/+’s

Z!+ - 3.4% momentum resolution

Z! e+ e- 3.4% best

4/24/2002 Ulrich Heintz - NEPPSR 2002 38

anatomy of a W! e event

hadron colliders

e

p

pT

pz

proton beam

antiproton beam

pZ

precoil

Wmeasure

electronsneutrinosrecoil (everything else)

DØ detector

4/24/2002 Ulrich Heintz - NEPPSR 2002 39

neutrino signatureneutrino

measurenothing

momentum conservation

TrecoilT

eTT

recoilTT

eT

recoilzrecoilepp

pppp

ppp

pppppp

missing

0

knowt don'but 0

4/24/2002 Ulrich Heintz - NEPPSR 2002 40

W mass measurementW boson

measure

MT is not invariantdepends on pT

W and parton distribution functions

detector acceptances

need a detailed model ofW boson productiondetector

2222

WWT

WTT

TeT

WT

TeT

WT MpEM

ppE

ppp

Z mass measurement

why transverse mass?

4/24/2002 Ulrich Heintz - NEPPSR 2002 41

W mass fitmaximum likelihood fit

MW=80.45§0.07 GeV

4/24/2002 Ulrich Heintz - NEPPSR 2002 42

systematic uncertaintiesinputs to MC model affect measurement

parton distribution functions pT distribution of W radiative corrections to W decay detector model

general procedure constrain input parameters vary parameters within the allowed range determine the effect on the mass measurement

(D0) GeV 084.0483.80

(CDF) GeV 079.0443.80

W

W

m

m(D0) GeV 084.0483.80

(CDF) GeV 079.0443.80

W

W

m

m

4/24/2002 Ulrich Heintz - NEPPSR 2002 43

LEP-II1996-2000 LEP operated above WW

threshold s = 161-209 GeVW+W- pair production

e

e

Z

W

W

e

e

W

W

e

e

W

W

4/24/2002 Ulrich Heintz - NEPPSR 2002 44

W mass at thresholdW mass

= 80.40 GeV § 0.20 (stat) § 0.07 (syst) § 0.03 (beam)

from WW at s = 161 GeV

4/24/2002 Ulrich Heintz - NEPPSR 2002 45

W mass from direct reconstructionWWqqqq

reconstruct 4 jets 5C fit (E, p, m1 = m2)

3 possible jet pairingscombinatoric

background

quarks are created so close together that their fragmentation is not independent

color-reconnectionBose-Einstein

correlations mW = 80.457 § 0.030(stat) § 0.054(syst) GeVmW = 80.457 § 0.030(stat) § 0.054(syst) GeV

4/24/2002 Ulrich Heintz - NEPPSR 2002 46

W mass from direct reconstructionWWqqℓ

neutrino not detected

2C fit (E, p, m1=m2)

mW = 80.448 GeV § 0.033(stat) GeV § 0.028(syst) GeV

DELPHI

4/24/2002 Ulrich Heintz - NEPPSR 2002 47

world average

4/24/2002 Ulrich Heintz - NEPPSR 2002 48

Tevatron tail of mT spectrum

W =2.115§0.105 GeV

LEP-II width of invariant

mass distributions W =2.150§0.091

GeV

direct measurement of W width

4/24/2002 Ulrich Heintz - NEPPSR 2002 49

Tevatron indirect measurement from ratio of B

W = 2.171§ 0.052 GeV

indirect measurement of W width

standard model LEP

eW

eWW

eeZW

ZeW

eeZZ

eWW

B

BRBB

BR

4/24/2002 Ulrich Heintz - NEPPSR 2002 50

W width

4/24/2002 Ulrich Heintz - NEPPSR 2002 51

gauge boson self couplingsthe SU(2)£U(1) theory predicts

seven Lorentz-invariant amplitudes each five constrained by electromagnetic

gauge invariance and neutron dipole moment

constrain two couplings, , Tevatron: W, WW, WZ production LEP-II: WW production

Z

W

W

W

W

4/24/2002 Ulrich Heintz - NEPPSR 2002 52

gauge boson self couplingsin standard

model = 1 ( =0) = 0

if W have only electromagnetic couplings = 0 ( = -1) = 0 excluded

Delphi, L3, Opal

95% cl

68% cl

standard model

4/24/2002 Ulrich Heintz - NEPPSR 2002 53

the top quarkdiscovered in 1995 by CDF and DØ

completes the 3rd generation mass is large!

4/24/2002 Ulrich Heintz - NEPPSR 2002 54

top quark signature

b

b

q

q

W Wt t

4/24/2002 Ulrich Heintz - NEPPSR 2002 55

top mass measurementmeasure lepton, 4 jets, missing pT

1 unknown 3 constraints 1C kinematic fit compare to MC

mtop = 176.0§6.5 GeV (CDF)mtop = 172.1§7.1 GeV (DØ)mtop = 174.3§5.1 GeV

mtop = 176.0§6.5 GeV (CDF)mtop = 172.1§7.1 GeV (DØ)mtop = 174.3§5.1 GeV

CDF

4/24/2002 Ulrich Heintz - NEPPSR 2002 56

does it all fit?global electroweak fit

include W mass, width and top mass measurements

consistent with standard model

%)14(

14/6.19

GeV 019.0403.80

00036.022255.0sin

GeV 81

GeV 3.48.175

2

2

4932 dof

M

m

m

W

w

H

t

4/24/2002 Ulrich Heintz - NEPPSR 2002 57

yet another way to measure sin2w

charged/neutral current cross section

is a function of sin2 w

but sensitive to sea quark contributions

sea quark contributions cancel but measure and

separately

“charged current”

d,s u,c

“neutral current”

Z0

u,d,s u,d,s

CCCC

NCNC

CC

NC

R

R

4/24/2002 Ulrich Heintz - NEPPSR 2002 58

NuTeV

toroidal muon spectrometer

target/calorimeteriron

liquid scintillatordrift chambers

“Nu”trinos at the “Tev”atron

4/24/2002 Ulrich Heintz - NEPPSR 2002 59

NuTeVfixed target experiment p,K

two beams: and charged current events

neutral current events

4/24/2002 Ulrich Heintz - NEPPSR 2002 60

NuTeVresult

NuTeVsin2 w = 0.2277 § 0.0013 (stat) §

0.0009 (syst)

global electroweak fit: sin2 w = 0.22255 § 0.00036

3 standard deviation discrepancy

4/24/2002 Ulrich Heintz - NEPPSR 2002 61

does it still all fit?global electroweak fit

include sin2w from NuTeV

still consistent with standard model?

%)7.1(

15/8.28

GeV 018.0394.80

00036.022272.0sin

GeV 85

GeV 4.47.174

2

2

5434 dof

M

m

m

W

w

H

t

4/24/2002 Ulrich Heintz - NEPPSR 2002 62

precision measurements

4/24/2002 Ulrich Heintz - NEPPSR 2002 63

Outlinethe standard modelexperimental confirmationprecision measurementsdoes it fit?future prospects

Tevatron Run 2 LHC linear collider

are we done?summary

4/24/2002 Ulrich Heintz - NEPPSR 2002 64

Tevatron upgrade Main Injector

2r = 3.3 km 8150 GeV p synchrotron 8120 GeV to p, fixed

target 1508 GeV for p recovery 344 dipoles, 208 quads

p Source upgrades to target, Li lens debuncher and

accumulator stochastic cooling systems

Recycler 8 GeV p storage ring 416 permanent magnets

4/24/2002 Ulrich Heintz - NEPPSR 2002 65

Tevatron run 2now until LHC is competitive...s = 1.96 TeV

Run 2A (<2005)L≈1032 cm-2s-1, ∫Ldt≈2 fb-1

Run 2B (>2005)L≈5x1032 cm-2s-1, ∫Ldt≈13 fb-1

W mass to 27-17 MeVtop mass to 2.8-1.3 GeVHiggs see next lecture

4/24/2002 Ulrich Heintz - NEPPSR 2002 66

Tevatron run 2

4/24/2002 Ulrich Heintz - NEPPSR 2002 67

can we exclude the standard model?

global electroweak fit¼ 2008summer 2001

Grünewald, Heintz, Narain, Schmitt, hep-ph/0111217

4/24/2002 Ulrich Heintz - NEPPSR 2002 68

beyond Run 2LHC (starts in 2006?)

pp collisions at s = 14 TeV MW, mtop

Higgs phenomena beyond standard model

linear collider (starts before I retire?) e+e- collisions at s ¼ 500 GeV Giga-Z option MW

mtop

precision study of Higgs...?

4/24/2002 Ulrich Heintz - NEPPSR 2002 69

are we done? shortcomings of the

standard model too many free

parameters Higgs mechanism put in

by hand light fundamental scalar

requires fine tuning (hierarchy problem)

keeping the Higgs coupling finite as Q21, drives it to zero at low Q2 (triviality problem)

does the Higgs exist? only e&m and weak force

truly unified does not describe gravity

4/24/2002 Ulrich Heintz - NEPPSR 2002 70

summarystandard model

unifies electroweak interaction into one gauge theory

strong interaction many predictions confirmed precisely by

experiment some hints of discrepancies at the 3

sigma level theoretically unsatisfying

your charge find physics beyond the standard model

4/24/2002 Ulrich Heintz - NEPPSR 2002 71

weak interactionsmuon

decay

25

6

5

3

2

GeV10)1(16639.1

s102.2

)1(1921

F

F

G

cmG

e

e-

-

4/24/2002 Ulrich Heintz - NEPPSR 2002 72

weak interactionsmuon

decay

2

2

5

3

4

4

3

5

4

4

8

2

)8(121

)8(12

W

WF

W

W

W

W

M

gG

mg

M

m

M

g

W-

e

e-

-Wg

Wg

2WM

4/24/2002 Ulrich Heintz - NEPPSR 2002 73

Large Electron-Positron collider at CERN

4/24/2002 Ulrich Heintz - NEPPSR 2002 74

DØ detectorcalorimeter

measure energy and position

drift chambersmeasure direction

4/24/2002 Ulrich Heintz - NEPPSR 2002 75

electron signatureelectron

measureenergy Edirection ,

calculatemomentum

p p

e

Cal

orim

eter

EM

CH

FH

Dri

ft c

ham

ber

sin

cos

sinsin

sincos

c

Ep

c

Ep

T

4/24/2002 Ulrich Heintz - NEPPSR 2002 76

detector

4/24/2002 Ulrich Heintz - NEPPSR 2002 77

measuring the Wrecoil

measureenergy in cell i Ei

direction i, i

cannot measureparticles along beam

calculate

p p

electroncells

iT

recoilT pp

4/24/2002 Ulrich Heintz - NEPPSR 2002 78

neutrino signatureneutrino

measurenothing

momentum conservation

TrecoilT

eTT

recoilTT

eT

recoilzrecoilepp

pppp

ppp

pppppp

missing

0

knowt don'but 0

4/24/2002 Ulrich Heintz - NEPPSR 2002 79

detector

4/24/2002 Ulrich Heintz - NEPPSR 2002 80

Z mass measurementZ boson

measure

MZ is invariantno dependence on pT

Z

fit to Breit-Wigner) done (sort of...)

222

ZZZ

eeZ

eeZ

pEM

EEE

ppp

W mass measurement

4/24/2002 Ulrich Heintz - NEPPSR 2002 81

W mass measurementW boson

measure

MT is not invariantdepends on pT

W and parton distribution functions

detector acceptances

need a detailed model ofW boson productiondetector

2222

WWT

WTT

TeT

WT

TeT

WT MpEM

ppE

ppp

4/24/2002 Ulrich Heintz - NEPPSR 2002 82

why transverse mass?W boson W mass measurement

4/24/2002 Ulrich Heintz - NEPPSR 2002 83

Monte Carlo modelcomputer simulation

pick random pW, MW from distribution

pick random decay angles from distribution

simulate detector response

pe and pTrecoil

do this billions of times....

W mass fit

4/24/2002 Ulrich Heintz - NEPPSR 2002 84

References Thomas Junk, CERN (ITP 4/18/01) Searches for the Higgs Boson at

LEP Llewellyn Smith, on the determination of sin2 in semileptonic

neutrino interactions (KEK scan 83-4-300) K. McFarland “A Departure From Prediction: ewk Physics at NuTeV”,

FNAL Wine & Cheese October 26, 2001 D0 “Limits on anomalous WW couplings from...”, March 14, 1997 S. Schmidt-Kärst “W mass measurements using fully hadronic

events at LEPII”, ICHEP 2000, Osaka R. Ströhmer “W measurements using semileptonic and fully leptonic

events at LEPII”. ICHEP 2000, Osaka LEPEWWG/MASS/2000-01 “Combined preliminary results on mass

and with of W boson by LEP” Glenzinski, Heintz, “Precision measurements of the W boson mass” LEP electroweak working group summer 2002 plots LEPEWWG/2002-01 “Combination of preliminary ewk measurements

and constraints on the sm” Heintz “Electroweak Measurements from Fermilab”, APS centennial

meeting 1999