6 Fuzzy Relations - UNICAMPgomide/courses/IA861/transp/FSE_Chap6.pdf · 6.2 Fuzzy relations ... 6.5...

Post on 02-May-2019

221 views 0 download

transcript

6 Fuzzy Relations

Fuzzy Systems EngineeringToward Human-Centric Computing

6.1 The concept of relations

6.2 Fuzzy relations

6.3 Properties of fuzzy relations

6.4 Operations on fuzzy relations

6.5 Cartesian product, projections, and cylindrical extension

6.6 Reconstruction of fuzzy relations

6.7 Binary fuzzy relations

Contents

Pedrycz and Gomide, FSE 2007

6.1 The concept of relations

Pedrycz and Gomide, FSE 2007

Relation

di

wj

X{ d1, d2,...,di,...dn}

Y{ w1, w2,...,ji,...wm}

R= {(di, wj) | di∈X, wj∈Y}

Docs Keywords

Pedrycz and Gomide, FSE 2007

0 2 4 6 80

2

4

6

8

x

y

(a) Relation "equal to"

02

46

8

0

2

4

6

80

0.2

0.4

0.6

0.8

1

x

(b) Characteris tic function of "equal to"

y

X = Y = {2, 4, 6, 8} equal to R= {(2,2), (4,4), (6,6), (8,8)}

=

1000

0100

0010

0001

R

y

x

y

x

R(x,y)

Relation R : X×Y → {0,1}

Pedrycz and Gomide, FSE 2007

≤≤

=otherwise0

1and1if1)(

|y||x|y,xR

=+=

otherwise0

if1)(

222 ryxy,xR

Circle Square

x

yR(x,y)

1

x

yR(x,y)

1

Examples

Pedrycz and Gomide, FSE 2007

6.2 Fuzzy relations

Pedrycz and Gomide, FSE 2007

Fuzzy relation R : X×Y → [0,1]

=

1080

010

0180

6001

.

.

.

R

D = { dfs, dnf, dns, dgf}

W = { wf, wn, wg}

Docs

Keywords

R : D×W → [0,1]

dfs

dnf,

dns

dgf

wf wn wg

Example

1

23

4

1

2

30

0.2

0.4

0.6

0.8

1

documents

(a) Membership function of R

keywords

Pedrycz and Gomide, FSE 2007

0)( >α

α−−= ,

|yx|expy,xRe

Example

x approximately equal to y

X = Y = [0,4]

α = 1

Pedrycz and Gomide, FSE 2007

6.3 Properties of fuzzy relations

Pedrycz and Gomide, FSE 2007

Domain

Codomain

)(sup)(dom y,xRxRy Y∈

=

)(sup)(cod y,xRyRx X∈

=

Fuzzy relation R : X×Y → [0,1]

Pedrycz and Gomide, FSE 2007

Representation of fuzzy relations

U]10[ ,RR

∈ααα=

)]}([{minsup)(]10[

y,xR,y,xR,

α=∈α

Representation theorem

Pedrycz and Gomide, FSE 2007

Equality

Inclusion

Fuzzy relations P,Q : X×Y → [0,1]

P(x,y) = Q(x,y) ∀(x,y) ∈ X×Y

P(x,y) ≤ Q(x,y) ∀(x,y) ∈ X×Y

Pedrycz and Gomide, FSE 2007

6.4 Operations on fuzzy relations

Pedrycz and Gomide, FSE 2007

Fuzzy relations P,Q : X×Y → [0,1]

Union: R= P ∪ Q

Intersection: R= P ∪ Q

R(x,y) = P(x,y) s Q(x,y) ∀(x,y) ∈ X×Y ( s is a t-conorm)

R(x,y) = P(x,y) t Q(x,y) ∀(x,y) ∈ X×Y ( t is a t-norm)

Pedrycz and Gomide, FSE 2007

Fuzzy relation R : X×Y → [0,1]

Standard complement: R

Transpose: RT

R(x,y) = 1–R(x,y) ∀(x,y) ∈ X×Y

RT(y,x) = R(x,y) ∀(x,y) ∈ X×Y

Pedrycz and Gomide, FSE 2007

6.5 Cartesian product,projections,and cylindricalextension of fuzzy sets

Pedrycz and Gomide, FSE 2007

Cartesian product

A1, A2, ..., An fuzzy sets on X1, X2, ..., Xn

R= A1× A2 × ... × An

R(x1, x2,...,xn) = min {A1(x1), A2(x2), ..., An(xn)} ∀(xi,yi) ∈ Xi×Yi

Generalization

R(x1, x2,...,xn) = A1(x1) t A2(x2) t ...t An(xn) ∀(xi,yi) ∈ Xi×Yi

t = t-norm

Pedrycz and Gomide, FSE 2007

R(x,y) = min {A(x), B(y)} R(x,y) = A(x)B(y)

A(x) = exp[-2(x – 5)2]

B(y) = exp[-2(y – 5)2]

Examples

R = A×B

Pedrycz and Gomide, FSE 2007

Projections of fuzzy relations

R: X1× X2 × ... × Xn → [0, 1]

X = Xi× Xj × ... × Xk

)(sup)()( 2121 nx,...,x,x

nkji x,...,x,xRx,...,x,xRojPrx,...,x,xRvut

== XX

I = { i, j, ..., k}, J = { t, u, ..., v}, I∪J = N, I∩J = ∅

N = {1,2,...n}

Pedrycz and Gomide, FSE 2007

R(x, y) = exp{–α[(x – 4)2 + (y – 5)2]}, α = 1

Example

)(sup)(Proj)( y,xRy,xRxRy

== XX

)(sup)(Proj)( y,xRy,xRyRx

Y == Y

Pedrycz and Gomide, FSE 2007

Example

R: X × Y →[0, 1] , X = {1, 2, 3}, Y = {1, 2, 3, 4, 5}

=9030806080

9020018060

2050806001

)(

.....

.....

.....

y,xR

1

2

3

1

2

3

4

50

0.2

0.4

0.6

0.8

1

x

Relation R and its projections on X and Y

y

RRxRy

Ο∇∆

R

Rx

Ry

RX = [1.0, 1.0, 0.9]

RY = [1.0, 0.8, 1.0, 0.5, 0.9]

Pedrycz and Gomide, FSE 2007

Cylindrical extension

cylA(x,y) = A(x) , ∀x ∈ X

Pedrycz and Gomide, FSE 2007

cylA R

cylA∩RcylA∪R

Pedrycz and Gomide, FSE 2007

6.6 Reconstruction of fuzzyrelations

Pedrycz and Gomide, FSE 2007

Reconstruction using Cartesian product

ProjXR × ProjYR ⊇ R

0 5 100

10

20

x

y

(b) Contours of Rm on X and Y

0 5 100

10

20

x

y

(e) Contours of the Cartesian Produtc of ProjxRm and ProjyRm

Rnoninteractive

Pedrycz and Gomide, FSE 2007

0 5 100

10

20

x

y

(e) Contours of the Cartesian Produtc of ProjxRp and ProjyRp

0 5 100

10

20

x

y

(b) Contours of Rp on X and Y

Rinteractive

Pedrycz and Gomide, FSE 2007

6.7 Binary fuzzy relations

Pedrycz and Gomide, FSE 2007

Binary fuzzy relation R : X×X → [0,1]

Features

(a) Reflexivity

R(x,x) = 1

R(x,x) ⊇ I

I = Identity

R(x,x) ≥ ε ε-reflexive

max {R(x,y), R(y,x)} ≤ R(x,x) locally reflexive

x

Pedrycz and Gomide, FSE 2007

(b) Symmetry

R(x,y) = R(y,x) ∀∈×

RT = R

(c) Transitivity

sup z∈X { R(x, z) t R(z, y)} ≤ R(x, y) ∀x, y, z ∈X

x

y

x

z

yz’

z’’

Pedrycz and Gomide, FSE 2007

Transitive closure

trans(R) = R= R∪ R2 ∪..... ∪Rn

R2 = RoR ........ Rp = RoRp –1

RoR(x,y) = maxz{ R(x,z) t R(z,y)}

If R is reflexive, then I ⊆ R ⊆ R2 ⊆... ⊆ Rn–1 = Rn

I = identity

Pedrycz and Gomide, FSE 2007

procedure TRANSITIVE-CLOSUR-W (R) returns transitive fuzzy relation

static: fuzzy relation R = [r ij]

for i = 1:n dofor j = 1:n do

for k = 1:n dor jk ← max (r jk, r ji t r ik)

return R

Floyd-Warshall procedure to find trans(R)

Pedrycz and Gomide, FSE 2007

Equivalence relations

R is an equivalence relation if it is

– reflexive

– symmetric

– transitive

Equivalence class

Ax = {y ∈ X | R(x,y) = 1}

X/R = family of all equivalence classes of R (partition of X)

R : X×X → {0,1}

equivalence relationsgeneralize the idea ofequality

Pedrycz and Gomide, FSE 2007

R is a similarity relation if it is

– reflexive

– symmetric

– transitive

Equivalence class

P(R) = {X/Rα | α ∈ [0, 1]}

Nested partitions: if α > β then X/Rα finer than X/Rβ

R : X×X → [0,1]

Similarity relations

Pedrycz and Gomide, FSE 2007

Example

=

01505000

50019000

50900100

0000180

0008001

...

...

...

..

..

R

=

=

=

10000

001100

010100

00010

00001

10000

01100

01100

00011

00011

11100

11100

11100

00011

00011

908050

.

.R,R,R ...

Pedrycz and Gomide, FSE 2007

=

=

=

10000

001100

010100

00010

00001

10000

01100

01100

00011

00011

11100

11100

11100

00011

00011

908050

.

.R,R,R ...

Partition tree induced by similarity relation R

c,d,e a,b

a,b c,d e

a b c,d e

a b c d e

α=0.8

α=0.9

α=1.0

α=0.5

Pedrycz and Gomide, FSE 2007

Compatibility relations

R is a compatibility relation if it is

– reflexive

– symmetric

α -Compatibility class: A ⊂ X such that

R(x,y) = 1 ∀ x,y ∈ A

Do not necessarily induce partitions

R : X×X → {0,1}

Pedrycz and Gomide, FSE 2007

Proximity relations

R is a proximity relation if it is

– reflexive

– symmetric

Compatibility class: A ⊂ X such that

R(x,y) = 1 ∀ x,y ∈ A

Do not necessarily induce partitions

R : X×X → [0,1]

=

015040060

50017000

407001600

00600170

6007001

....

...

....

...

...

R

Pedrycz and Gomide, FSE 2007