9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace...

Post on 22-Dec-2015

219 views 1 download

Tags:

transcript

9.0 Laplace Transform 9.1 General Principles of Laplace

Transform

linear time-invariant

Laplace TransformEigenfunction Property

y(t) = H(s)esth(t)x(t) = est

dehsH s

Chapters 3, 4, 5, 9, 10

jω

Chap 3 Chap 5Chap 4

Chap 10

Chap 9

Laplace TransformEigenfunction Property

– applies for all complex variables s

dtethjH

jstj

Fourier Transform

Laplace Transform

dtethjH

jstj

eigenfunction of all linear time-invariant systems with unit impulse response h(t)

Laplace Transform

A Generalization of Fourier Transform

dtetx

dtetxjX

tj

tj

e

t-

jsjs to fromjω

X( + jω)

tetx Fourier transform of

sXtx

jsdtetxsXL

st

,

Laplace Transform

Laplace Transform

𝜎 2+ π‘—πœ”1

Laplace TransformA Generalization of Fourier Transform

– X(s) may not be well defined (or converged) for all s

– X(s) may converge at some region of s-plane, while x(t) doesn’t have Fourier Transform

– covering broader class of signals, performing more analysis for signals/systems

Laplace TransformRational Expressions and Poles/Zeros

sD

sNsX

roots zeros

roots poles

– Pole-Zero Plots

– specifying X(s) except for a scale factor

Laplace TransformRational Expressions and Poles/Zeros– Geometric evaluation of Fourier/Laplace transform

from pole-zero plots

jj

ii

s

sMsX

each term (s-Ξ²i) or (s-Ξ±j) represented by a vector with magnitude/phase

Poles & Zeros

x x

Region of Convergence (ROC)Property 1 : ROC of X(s) consists of strips parallel

to the jω -axis in the s-plane

– For the Fourier Transform of x(t)e-Οƒt to converge

dtetx t

Property 2 : ROC of X(s) doesn’t include any poles

depending on Οƒ only

Property 1, 3

Region of Convergence (ROC)Property 3 : If x(t) is of finite duration and absolutely

integrable, the ROC is the entire s-plane

dttxedtetx

dttxedtetx

TT

dttx

T

T

TT

T

t

T

T

TT

T

t

T

T

,0for

,0for

duration finite the: ,

2

1

22

1

2

1

12

1

2

1

21

Region of Convergence (ROC)Property 4 : If x(t) is right-sided (x(t)=0, t < T1),

and {s | Re[s] = Οƒ0}ROC, then

{s | Re[s] > Οƒ0}ROC, i.e., ROC

includes a right-half plane

dtetxedtetx

dtetx

t

T

T

T

t

t

T

0

1

101

1

1

0

1

for

01

Property 4

Region of Convergence (ROC)Property 5 : If x(t) is left-sided (x(t)=0, t > T2),

and {s | Re[s] = Οƒ0}ROC, then

{s | Re[s] < Οƒ0}ROC, i.e., ROC

includes a left-half plane

Property 5

Region of Convergence (ROC)Property 6 : If x(t) is two-sided, and {s | Re[s] =

Οƒ0}ROC, then ROC consists of a strip

in s-plane including {s | Re[s] = Οƒ0}

txtxtx

-tx-tx

txtxtx

LR

LR

LR

ROCROCROC

sidedleft : sided,right :

See Fig. 9.9, 9.10, p.667 of text

*note: ROC[x(t)] may not exist

Region of Convergence (ROC)A signal or an impulse response either doesn’t have a

Laplace Transform, or falls into the 4 categories of

Properties 3-6. Thus the ROC can be , s-plane, left-

half plane, right-half plane, or a signal strip

Region of Convergence (ROC)Property 7 : If X(s) is rational, then its ROC is

bounded by poles or extends to infinity– examples:

assas

tue

assas

tue

Lat

Lat

Re ROC ,1

Re ROC ,1

– partial-fraction expansion

See Fig. 9.1, p.658 of text

i i

i

assX

Region of Convergence (ROC)Property 8 : If x(s) is rational, then if x(t) is right-

sided, its ROC is the right-half plane to

the right of the rightmost pole. If x(t) is

left-sided, its ROC is the left-half plane

to the left of the leftmost pole.

Property 8

ROC

Region of Convergence (ROC)An expression of X(s) may corresponds to different

signals with different ROC’s.– an example:

21

1

sssX

– ROC is a part of the specification of X(s)

See Fig. 9.13, p.670 of text

The ROC of X(s) can be constructed using these properties

Inverse Laplace Transform

jddsdsesXj

tx

dejXtx

dejXjXFetx

stj

j

tj

tjt

21

21

21

1

1

1

1

1

111

– integration along a line {s | Re[s]=Οƒ1}ROC for a fixed Οƒ1

Laplace Transform

( 合成 ?)

(basis?)X

X

( εˆ†ζž ?)X

[𝑒(𝜎1+ 𝑗 πœ” ) 𝑑 ]βˆ—=π‘’πœŽ1 𝑑 β‹…π‘’βˆ’ 𝑗 πœ”π‘‘( εˆ†ζž )β‰  �⃗�⋅𝑣

basis

( 合成 )

π‘₯ (𝑑 )π‘’βˆ’πœŽ 1𝑑= 12πœ‹

βˆ’ ∞

∞

𝑋 (𝜎 1+ 𝑗 πœ”)𝑒 π‘—πœ”π‘‘ 𝑑𝑑

( εˆ†ζž )

𝑋 (𝜎 1+ 𝑗 πœ”)=βˆ’βˆž

∞

[π‘₯ (𝑑 )π‘’βˆ’πœŽ1𝑑]β‹…π‘’βˆ’ π‘—πœ”π‘‘ 𝑑𝑑

Practically in many cases : partial-fraction expansion works

Inverse Laplace Transform

1

m

i i

i

as

AsX

– ROC to the right of the pole at s = -ai

tueA tai

i

– ROC to the left of the pole at s = -ai

tueA tai

i

Known pairs/properties practically helpful

each termfor i

i

as

A

9.2 Properties of Laplace Transform

Linearity

222

111

ROC ,

ROC ,

ROC ,

RsXtx

RsXtx

RsXtx

L

L

L

212121 ROC , RRsbXsaXtbxtax L

Time Shift

RsXettx stL ROC ,00

Time Shift

Shift in s-plane

0

0

00

Reby shifted ROC

Re

ReROC ,0

s

Rsss

sRssXtxe Lts

See Fig. 9.23, p.685 of text

– for s0 = jΟ‰0

RjsXtxe Ltj ROC ,00

shift along the jω axis

Shift in s-plane

𝑅𝑒 [𝑠0]

𝑠0= π‘—πœ”0

Time Scaling (error on text corrected in class)

RsasaRa

sX

aatx L

ROC ,

1

– Expansion (?) of ROC if a > 1

Compression (?) of ROC if 1 > a > 0

reversal of ROC about jw-axis if a < 0

(right-sided left-sided, etc.)

See Fig. 9.24, p.686 of text

RssRsXtx L ROC ,

Conjugation

real if

ROC ,

txsXsX

RsXtx L

– if x(t) is real, and X(s) has a pole/zero at

then X(s) has a pole/zero at

0

0

ss

ss

Convolution

212121 ROC , RRsXsXtxtx L

– ROC may become larger if pole-zero cancellation occurs

Differentiation

RssXdt

tdx L ROC ,

ROC may become larger if a pole at s = 0 cancelled

R

ds

sdXttx L ROC ,

(βˆ’ 𝑗𝑑π‘₯ (𝑑)𝐹↔

π‘‘π‘‘πœ”

𝑋 ( π‘—πœ” ))

Integration in time Domain

0Re ROC ,1

,

0Re ROC ,1

sss

tu

tutxdx

ssRsXs

dx

L

t

tL

(𝑒 (𝑑 )𝐹↔

1π‘—πœ”

+πœ‹π›Ώ(πœ”))(

βˆ’ ∞

𝑑

π‘₯ (𝜏 ) π‘‘πœ=π‘₯ (𝑑 )βˆ—π‘’(𝑑)𝐹↔

𝑋 ( π‘—πœ” )π‘‘πœ”

+πœ‹ 𝑋 ( 𝑗0)𝛿(πœ”))

Initial/Final – Value Theorems

Theorem value-Final limlim

Theorem value-Initial lim

0ssXtx

ssXox

st

s

x(t) = 0, t < 0

x(t) has no impulses or higher order singularities at t = 0

Tables of Properties/Pairs

See Tables 9.1, 9.2, p.691, 692 of text

9.3 System Characterization with Laplace Transform

system function

transfer function

y(t)=x(t) * h(t)h(t)

x(t)

X(s) Y(s)=X(s)H(s)H(s)

Causality

– A causal system has an H(s) whose ROC is a right-half plane

h(t) is right-sided

– For a system with a rational H(s), causality is equivalent to its ROC being the right-half plane to the right of the rightmost pole

– Anticausality

a system is anticausal if h(t) = 0, t > 0

an anticausal system has an H(s) whose ROC is a left-half plane, etc.

Causality

ROCis

right half Plane

right-sided CausalX

Causal

𝑋 (𝑠 )=βˆ‘π‘–

𝐴𝑖

𝑠+π‘Žπ‘–,

𝐴𝑖

𝑠+π‘Žπ‘–

β†’ π΄π‘–π‘’βˆ’π‘Žπ‘– 𝑑𝑒 (𝑑)

Stability

– A system is stable if and only if ROC of H(s) includes the jΟ‰ -axis

h(t) absolutely integrable, or Fourier transform converges

See Fig. 9.25, p.696 of text

– A causal system with a rational H(s) is stable if and only if all poles of H(s) lie in the left-half of s-plane

ROC is to the right of the rightmost pole

Stability

Systems Characterized by Differential Equations

N

kkk

M

k

kk

M

k

kk

N

k

kk

k

kM

kk

N

kk

k

k

sa

sb

sX

sYsH

sXsbsYsa

dt

txdb

dt

tyda

0

0

00

00

zeros

poles

System Function Algebra

– Parallel

h(t) = h1(t) + h2(t)

H(s) = H1(s) + H2(s)

– Cascade

h(t) = h1(t) * h2(t)

H(s) = H1(s) ‧ H2(s)

System Function Algebra

– Feedback

x(t) +

-+

h1(t)H1(s)

e(t)y(t)

h2(t)H2(s)

z(t)

sHsH

sH

sX

sYsH

sYsHsXsHsY

21

1

21

1

9.4 Unilateral Laplace Transform

Transform Laplace bilateral

Transform Laplace unilateral 0

dtetxsX

dtetxsX

st

stu

impulses or higher order singularities at t = 0 included in the integration

uL sXtx

– ROC for X(s)u is always a right-half plane

– a causal h(t) has H(s) = H(s)

– two signals differing for t < 0

but identical for t β‰₯ 0 have identical unilateral Laplace transforms

– similar properties and applications

9.4 Unilateral Laplace Transform

sHsH u

Examplesβ€’ Example 9.7, p.668 of text

0b Transform, Laplace No

0b ,sReb ,211

sRe ,1

sRe ,1

)(

22

bbsb

bsbse

bbs

tue

bbs

tue

tuetueetx

Ltb

Lbt

Lbt

btbttb

Examplesβ€’ Example 9.7, p.668 of text

Examplesβ€’ Example 9.9/9.10/9.11, p.671-673 of text

)()()( ,1sRe2

)( )( ,2sRe

)( )( ,1sRe

21

11

211)(

2

2

2

tuetuetx

tueetx

tueetx

sssssX

tt

tt

tt

Examplesβ€’ Example 9.9/9.10/9.11, p.671-673 of text

Examplesβ€’ Example 9.25, p.701 of text

stable is )( plane half-left in the poles Allcausal is )(

polerightmost theofright the tois )( of 2 ,1at poles ,

1sRe ,21

3)()(

)(

1sRe ,21

1)(

3sRe ,3

1)(

)( )()()( 23

sH

sHsHROC

-s-sROCROCROCss

ssXsY

sH

sssY

ssX

tueetytuetx

HXY

ttt

plane half-left in the poles All

left-half plane

Problem 9.60, p.737 of text

poles no , all ,1

3

22

33

3

see

eesH

TtTtth

sTsT

sTsT

Echo in telephone communication

Problem 9.60, p.737 of text

)22

(log1

,01

of zeros find To)2(22 2

Tm

Tj

Ts

ejee

sHmjsTsT

zeros

πœ‹

2π‘‡πœ‹

2𝑇+

2πœ‹π‘‡

Problem 9.60, p.737 of text

TtTt

sH

Ttee

jT

jT

s

tT

jTts

3by that cancels )(by generated Signal

eeigen valu ,0

2 when )1(1

)2

(log1for

3

22

log1

000

0

Problem 9.44, p.733 of text

Tteee

jT

js

Tjmee

eee

nTte

TtT

jts

jmTs

Tsn

snTnT

n

nT

when

2-1for

2-1s ,1

poles find to

11sX

e tx

)21(

000

)2()1(

)1(0

T-

0

0