A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital...

Post on 21-Aug-2020

2 views 0 download

transcript

A 0.84ps-LSB 2.47mW Time-to-Digital

Converter Using Charge Pump and

SAR-ADC

Zule Xu, Seungjong Lee, Masaya

Miyahara, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

2Outline

• Motivation

• Issues of conventional techniques

• Proposed TDC

• Measured performance

• Conclusion

3Motivation

• A fine resolution TDC contributes low in-band phase

noise to a digital PLL

• Example: fv = 4GHz, fref = 40MHz, PN = -120dBc/Hz

tres = 0.87ps !

• Delay-chain’s resolution is limited to its unit delay

fv

fref

...td td td

Dout

...

Encoder

Counter

TDC

DLF DCO

Σ

FCW fv

fref

4Motivation

• For finer resolution, more energy, more area, or

more conversion times are traded off

• Is there a solution for the best balance?

0

100

200

300

400

0 0.02 0.04 0.06 0.08 0.1

Fo

M [

fJ/b

it]

Area [mm2]

5.5ps

1.25ps [JSSC`12]3.75ps

4.7ps

4.8ps Noise shaping1ps [JSSC`09]

5Issues of Recent Techniques

• Vernier chain

– PVT and jitter effects

– Arbiter’s metastability

(unacceptable when

the input <= 1ps)

CK1

CK2

...td1 td1

...

...td2 td2

...D[0]

Delay

chain

CK1

CK2

Encoder

...

Dout

TADelay

chain

• Pipeline

– Nonlinearity of the time

amplifier (TA)

– Mismatch

6Issues of Recent Techniques

• Stochastic

– Short linear range

– Highly dependent on

layout and process

N arbiters w/ mismatches

CK1

CK2

Dout

• Noise shaping

– Low input signal

bandwidth

– Requires a fast clock

for the counter

Σ

(Counter)

Digital-to-time

converter

QTin

Dout

CKfast

7Issues of a Previous Technique

• Time-to-amplitude conversion has achieved

fine resolution but…

• Fast clock necessary

• Large capacitance

• Susceptible to

leakage

• Low speed

Dout

Counter

CKfastRST V1

Tin

I

RST

I/N

EN

Fa

lling

ed

ge

trigg

ere

d

C

M*C

V2

V1

V2

...

Tin

EN

CKfast

tres = Tckfast/(M*N)

[E.R.Ruotsalainen, et.al,

pp.1507-1510, JSSC 2000]

tres = 32ps, 0.5um BiCMOS

8Time-to-Charge Conversion

• Time-to-charge conversion suggests the

potential for extremely fine resolution

ADCDout

Tin

Vout

CI RST

C 1pF

I 1mA

Vlsb 1mV

tres 1ps

tres = C*Vlsb/I

• Thermal noise restricts C and I

9Thermal Noise

• Noise increases with integration time (Δt)

• Trade-off exists between power (I) and area (C)

d

m

res

lsbvn

I

g

t

V

C

tkT

4

2

A constant for transistor sizing

Crdsin2

σvn2

ΔtΔt

256 512 768 1024

0.1

0.2

0.3

0.4

0.5

t [ps]

vn [

LS

B]

tres

= 1ps, 10-bit, Vlsb

= 1mV, gm

/Id = 9

0.5pF, 0.5mA

1pF, 1mA

2pF, 2mA

10Proposal

• Time-to-charge conversion on a SAR-ADC

• Short Ton is required to suppress the noise; Ton ≈

200ps in this design

SAR-ADC

Dout

...

...

Cu 2n*Cu

...

...

Cu 2n*Cu

Charge pump

...

CKadc

Vp

Vn

Ton

UP

CK2

CK1R

RDN

QD

QD

PFD

11Noise and Speed

1) Thermal noise from the charge pump accumulated

during (Tin+Ton)

2) SAR-ADC should be faster than 40MS/s

Tin

Ton

CK1,CK2

UP, DN

Vp, Vn

Tin

ΔV

CKadc

Sampling Conversion Sampling

...

... ...

...

Dout

< 24ns

Dn Dn+1

~25ns

12SAR-ADC

• 12-bit topology

– 10-bit ENOB@40MS/s

– 1.6mW@1.0V power supply

[S. Lee, SSDM 2013, to be presented]

• Dynamic comparator

– Low power

• Metal-Oxide-Metal capacitor

– High density

• Same pitch of cap. and switch

– Better matching and

scalabilityUnit capacitor

and switch

Top

Bottom

MOS

SW

Top

Bottom

MOS

SW

...

13Scaling of the SAR-ADC

• Down scaling lower power and smaller area

shorter range but not harmful for an integer-N PLL

• Resolution and intrinsic SNR are not degraded since

the required charges are not changed

oninpmnm

cpreslsb

diffvn

lsb

TTgg

ItCV

kT

V

1

2

12

,

2

Other

LSBs8Cu 32Cu 64Cu16Cu

Other

LSBs8Cu 16Cu

Other

LSBs

12-bit

10-bit 8-bit Unchanged Q2

Intrinsic SNR:

14Charge Pump

• The CMFB matches the currents of PMOS and

NMOS

Vbp_fb

Vcp

RSTUP UP

DN

RST

UP

DNDN

DN

Vcn

Vbn VbpVcm

Φ2

Φ1

Vp Vn

UPVm

Φ1 Φ2

Settled

voltage

• Conventional

– Amplifier-based

CMFB

• Proposal

– Switched-capacitor

CMFB

– For low power and

low voltage

Reset mode

15Charge Pump

• Other mismatches contribute to a static offset

• It can be canceled in the digital domain

Vbp_fb

Vcp

RSTUP UP

DN

RST

UP

DNDN

DN

Vcn

Vbn VbpVcm

Φ2

Φ1

Vp Vn

UPVm

Φ1 Φ2

Held voltage

Charging mode

-4 -3 -2 -1 0 1 2 3 40

10

20

30

40

50

(Vp-Vn) [mV]

Co

un

t

σ ≈ 1mV

Monte-Calo simulation

of the output voltage

(Δt=0, 1pF load cap.)

16Implementation

• CMOS 65nm, core area = 0.06mm2

• Measurement setups

SG1

SG2

TDCLogic

analyzer

40MHz

40MHz + 5Hz

Pulse

generator

Splitter TDCLogic

analyzerΔt

~100ps rising time

17Measurement

• DNL and performance summary

0 32 64 96 128 160 192 224 256

-1

0

1

DNL and INL in 8-bit with 0.84ps/LSB

DN

L [

LS

B]

0 32 64 96 128 160 192 224 256

-2

0

2

Code

INL

[L

SB

]

Performance Value

CMOS [nm] 65

Supply [V] 1.0

Conv. Rate [MS/s] 40

Power [mW] 2.47

Resolution [ps] 0.84

Range [bits] 8

DNL [LSB] -0.7/1.0

INL [LSB] -2.7/1.7

18

113 114 115 116 1170

0.5

1

1.5

2

2.5x 10

5

Code

Co

un

ts

67 68 69 70 71 72 73 74 75 76 770

0.5

1

1.5

2

2.5x 10

5

Code

Co

un

ts

Measurement

• Single-shot precision: < 1LSB

• The thermal noise increases with longer input

time interval

Δt=11ps

σ=0.24LSBΔt=47ps

σ=0.45LSB

19Performance Comparison

• Best balance is achieved

JSSC’10 VLSI’11 VLSI’12 ESSIRC’10 This workImproved

(Simulated)

Type Vernier Pipeline Noise Shaping Stochastic Charge Charge

CMOS [nm] 65 130 130 65 65 65

Supply [V] 1.2 1.3 1.2 1.2 1.0 1.2

Resolution [ps] 4.8 0.63 3 3 0.84 1

Range [bits] 7 11 11 4 8 10

DNL [LSB] <1 0.5 N/A 1.4 -0.7/1.0 -0.2/0.2

INL [LSB] 3.3 2 N/A 1.5 -2.7/1.7 -2.7

Frequency

[MHz]50 65

90

(OSR:16)40 40 100

Power [mW] 1.7 10.5 3.2 8 2.47 4

Area [mm2] 0.02 0.32 0.43 0.04 0.06 0.018

20Energy and Area Efficiencies

• Best balance is achieved

NFrequencyPowerFoM 2//

Energy efficiency:NBWPowerFoM 2//2/or

0

100

200

300

400

0 0.02 0.04 0.06 0.08 0.1

Fo

M [

fJ/b

it]

Area [mm2]

5.5ps

1.25ps [JSSC`12]3.75ps

4.7ps

4.8ps Noise shaping1ps [JSSC`09]

0.84ps [This work]

1ps[Improved, simulated]

21Conclusion

• The proposed TDC has achieved 0.84ps resolution,

2.47mW power consumption, and 0.06mm2 area

• The proposed TDC suggests the best balance

among resolution, energy, area, and conversion

times

• The proposed TDC has no issues from delay chains,

TAs, or arbiters

• The proposed TDC can be a practical solution for

digital PLLs

22Acknowledgement

• This work was partially supported by

HUAWEI, Berkeley Design Automation for the

use of the Analog Fast SPICE(AFS) Platform,

and VDEC in collaboration with Cadence

Design Systems, Inc.

23

Thank you

for your interest!

Zule Xu,

xuzule@ssc.pe.titech.ac.jp