A Case Study on Multi-Component Multi-Cluster Interaction...

Post on 26-Feb-2021

4 views 0 download

transcript

Technische Universität München

A Case Study on Multi-ComponentMulti-Cluster Interaction with an AMR Solver

WOLFHPC 2013

A. Atanasov, H.-J. Bungartz, K. Unterweger,T. Weinzierl, R. Wittmann

November, 18th 2013

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 1

Technische Universität München

Outline

Motivation

Communication

Software Architecture

Results

Conclusion & Outlook

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 2

Technische Universität München

Motivation

IO IO IO

IO IO IOIO IO IO

IO IO IO

NM

• Multi-cluster interactions between non-monolithic applications

• Examples : Multi-Physics, simulation-postprocessing coupling, . . .

• M request sources, N data sources, M̂ destination nodes

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 3

Technische Universität München

Use Case

View

Model

Controller

• Simulation Model: Parallel AMR solver for hyperbolic PDEs [4]

• Visualisation: Query-based data retrieval [3]

• Controller : User located in VR environment

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 4

Technische Universität München

Outline

Motivation

Communication

Software Architecture

Results

Conclusion & Outlook

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 5

Technische Universität München

M

SPoC

IO IO IO

IO IO IOIO IO IO

IO IO IO

N

M̂Visualisation

Simulation

Controller

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 6

Technische Universität München

M

SPoC

IO IO IO

IO IO IOIO IO IO

IO IO IO

N

M̂Visualisation

Simulation

0

0

Controller

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 7

Technische Universität München

M

SPoC

IO IO IO

IO IO IOIO IO IO

IO IO IO

N

M̂Visualisation

Simulation

0

0

1 1

Controller

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 8

Technische Universität München

M

SPoC

IO IO IO

IO IO IOIO IO IO

IO IO IO

N

M̂Visualisation

Simulation

0

0

1 1

2

Controller

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 9

Technische Universität München

M

SPoC

IO IO IO

IO IO IOIO IO IO

IO IO IO

N

M̂Visualisation

Simulation

0

0

1 1

2

3

Controller

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 10

Technische Universität München

Routing Information (0 − 3)

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 11

Technische Universität München

Merges : Greedy Merge Version(4 + 5)

M

SPoC

IO IO IO

IO IO IO

IO IO IO

IO

25%

10

IO

35%

60%

IO

10%10%

20%

N

Visualisation

Simulation

0

0

1 1

2

3

4

Controller

40%

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 12

Technische Universität München

Merges : Greedy Merge Version(4 + 5)

M

SPoC

IO IO IO

IO IO IO

IO IO IO

IO

25%

10

IO

35%

60%

IO

10%10%

20%

N

Visualisation

Simulation

0

0

1 1

2

3

4

Controller

40%

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 13

Technische Universität München

Merges : Greedy Merge Version(4 + 5)

M

SPoC

IO IO IO

IO IO IO

IO IO IO

IO

25%

10

IO

35%

60%

IO

10%10%

20%

N

Visualisation

Simulation

0

0

1 1

2

3

4

Controller

40%

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 14

Technische Universität München

Merges : Greedy Merge Version(4 + 5)

M

SPoC

IO IO IO

IO IO IO

IO IO IO

IO

25%

10

IO

35%

60%

IO

10%10%

20%

N

Visualisation

Simulation

0

0

1 1

2

3

4

Controller

40%

• Global identification of the nodes holding most data• Merge data on identified nodes• Forward merged data to destinations

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 15

Technische Universität München

M

SPoC

IO IO IO

IO IO IOIO IO IO

IO IO IO

N

M̂Visualisation Simulation

0

0

1 1

2

3

4

Controller

4

4

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 16

Technische Universität München

Hierarchical Merge Version(4)

Level 0

Level 1

Level 2

Level 3

Query

Level 0

v0 v1 v2 v3 v4 v5

cutoff level

cutoff level

• Use a logical tree to merge data• Merge data up to given cutoff ℓ

• Destinations merge the remaining data fragments

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 17

Technische Universität München

Tree Merge, cont.

Properties

• Requires a logical master-worker hierarchy

• Fully asynchronous

• Additional memory requirements dependent on ℓ

• ℓ can be chosen dynamically

• Merge distributed between N and M̂

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 18

Technische Universität München

Outline

Motivation

Communication

Software Architecture

Results

Conclusion & Outlook

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 19

Technische Universität München

Software Architecture

Scientific IDL

Proxygenerator

Component1 Component2

ASCoDT Framework

ASCODT Builder

Static Repository

DynamicRepository

CCAPorts

Static RepositoryAPI AbstractconfigurationAPI

Communicationspecificpartof theCCAPorts

Frameworkcalls CCAcodegenerator calls

Independentcomponentcalls

• A lightweighted distributed framework based on CCA [1]• Communication through BSD sockets or MPI Ports• IDE for component development [2]• Generate glue code from SIDL annotations

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 20

Technische Universität München

Outline

Motivation

Communication

Software Architecture

Results

Conclusion & Outlook

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 21

Technische Universität München

Results

1 2 4 8 16 32 640

1020304050607080

Level 3 full query

Avg. BandwidthMin.BandwidthMax. Bandwidth

[Mprocesses][Mprocesses]^

[Gbp

s]

1 2 4 8 16 32 6405

101520253035404550

Level 31/2 full query

Avg. BandwidthMin.BandwidthMax. Bandwidth

[Mprocesses][Mprocesses]^

[Gbp

s]

1 2 4 8 16 32 640

20

40

60

80

100

120

full query4096x4096

L3 TreeMerge TCPL3 TreeMergeMPIGreedy Merge TCP

[Mprocesses]

[Gbps]

^1 2 4 8 16 32 64

01020304050607080

1/2 full query4096x4096

L3 TreeMerge TCPL3 TreeMergeMPIGreedy Merge TCP

[Mprocesses]

[Gbps]

^

• Fully refined computational domain with 98 (6561 × 6561) cells• Two queries : full domain query, half domain query (4096 × 4096)

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 22

Technische Universität München

Outline

Motivation

Communication

Software Architecture

Results

Conclusion & Outlook

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 23

Technische Universität München

Conclusion & Outlook

Enabling technologies

• On-demand data retrieval

• Destination-aware data routing

• Asynchronous partial merges

• Hide technical details through CCA

Outlook

• Autotuning approaches

• User-defined communication protocols

• Multi-physics applications

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 24

Technische Universität München

References I

R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,L. McInnes, S. Parker, and B. Smolinski.Toward a common component architecture for high-performancescientific computing.In High Performance Distributed Computing, 1999. Proceedings. TheEighth International Symposium on, pages 115–124. IEEE, 1999.

A. Atanasov, H.-J. Bungartz, and T. Weinzierl.A toolkit for the code development in advanced computing.Technical Report TUM-I1330, 2013.

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 25

Technische Universität München

References II

A. Atanasov, M. Srinivasan, and T. Weinzierl.Query-driven parallel exploration of large datasets.In Large Data Analysis and Visualization (LDAV), 2012 IEEESymposium on, pages 23 –30, Oct. 2012.doi 10.1109/LDAV.2012.6378972.

K. Unterweger, T. Weinzierl, D. I. Ketcheson, and A. Ahmadia.Peanoclaw—a functionally-decomposed approach to adaptive meshrefinement with local time stepping for hyperbolic conservation lawsolvers.Technische Universität München, Technical Reports, 2013.

A. Atanasov: A Case Study on Multi-Component Multi-Cluster Interaction with an AMR Solver

WOLFHPC 2013, November, 18th 2013 26