Advances in Iterative learning Control with Application to Response Reconstruction ·...

Post on 17-Jun-2020

2 views 0 download

transcript

Advances in Iterative learning Control with Application to Response Reconstruction

J.J.A. EksteenDept. of Mechanical and Aeronautical Engineering, University of Pretoria

1

Introduction (1)

• Final validation of structural integrity is done experimentally (testing)

• Testing:

– Actual operation (accelerated)

– Laboratory (accelerated)

• In laboratory: recreate realistic structural responses

• At UP this is called response reconstruction.

2

3

Road Simulator Research Test Rig

INPUTS: u(t) = drive signals to actuators applied to test specimen 

OUTPUTS:y(t) = response signals in sensors on specimen

Introduction (2)

4

Response reconstruction is used to

recreate desired histories in response sensors

desired histories  = yd(t)

Is used when (most generally)• structure is dynamically excited• excitation is multi‐axis • cross‐coupling between axes

Thus, inverse problem (output is known, input is unknown)

Introduction (3)

5

• Response reconstruction can be used for:

• These are examples of environmental testing, other types include:

• Humidity

• Temperature

• Pressure 

• Acoustic noise, etc.

Introduction (4)

TEST TYPE Source of yd(t)

Fatigue tests  Field measurements (usually)

Vibration tests  Standards

Shocks tests  Standards

Example: Fatigue test (Autocar)

6

7

Example: Shock and vibration test (Airbus/Aerosud)

Cargo hold panels on A400M

8

Missile system vibration and shock testing

Example: Shock and vibration test (Thales)

AIM Domain  

9

Response Reconstruction Procedure (1)

• Need test rig (T) in lab with

– Test specimen

– Inputs, u(t) = drive signals to actuators

– Outputs, y(t) = response sensors on test specimen

– Realistic boundary conditions

• Need desired response histories (output) ‐ yd• Need inverse model of entire test system ‐ L

• Need reconstruction algorithm to 

– reconstruct desired outputs (responses)

– by calculating required inputs (actuator drive signals)

10

11

Response Reconstruction Procedure (2)

• Desired response histories (output) (yd) typically obtained by field measurements (full‐scale fatigue tests)

• Inverse model (L) obtained by 

– System identification on test rig in lab to get model

– Inversion of the model to get inverse model

• The reconstruction algorithm is an iterative off‐line control algorithm called Iterative Learning Control (ILC)

How is ILC done? (1)

• Have nonlinear test system = T, input = u, output = y:  y = T(u)

• Have desired response, yd ; need desired input ud• Have L = Inverse model of T  (may be very approximate)

• For i‐th iteration do test with u(i): y(i) = T(u(i))

• Conventional ILC algorithm:

u(i+1)  =  Q(u(i) + L(yd) ‐ L(y(i)))

u(0) = [0], y(0) = [0] 

• Q = Optional low pass filter12

13

How is ILC done? (2)

14

• Convergence  exact tracking (seldom over whole frequency band)

• Advantages of accurate inverse model (L)

• Reduced number and width of divergent frequency bands

• Increased width of convergent frequency band

• Control over rate of convergence

Thus gives better results before divergence (if ILC not convergent)

How is ILC done? (3)

15

In research at UP we propose 

• Nonlinear inverse model (L) instead of (usual) linear L (using NARX models)

• Using different models to model different frequency ranges separately instead of one model for whole frequency range

• Modifications to the ILC algorithm that may potentially give more accurate results

Response Reconstruction Research at UP (1) 

• Swingarm monoshockmotorcycle rear suspension

• High speed electrohydraulicactuator

• PID controller• AD/DA interface of test with computer

• Hydraulic pumps• Strain gauges: 

– A: near bracket– B: near pivot

16

Response Reconstruction Research at UP (2)