Aldo steinfeld

Post on 25-Jun-2015

533 views 1 download

Tags:

transcript

Liquid Fuels

from

Water, CO2, and Solar Energy

Aldo Steinfeld

IMDEA Energy4.4.2011

Sunlight + H2O + CO2 = Fuels

Syngas(H2 , CO)

Liquid Fuels• Diesel• Jet Fuel• Methanol

H2O, CO2

20 MW-electric/ 100 MW-thermal 11 MW-electric / 55 MW-thermal(Sevilla, Spain)

TS°

-50

0

50

100

150

200

250

300

1000 2000 3000 4000 5000

[kJ/

mol

]

Temperature [K]

H2OHOH2OHO2

00.10.2

0.30.40.50.60.70.80.9

1

2000 2500 3000 3500 4000

Temperature [K]

Equilibrium Mole Fractionp = 1 bar

2 2 2H O H + ½ O

H2/COH2O/CO2

O2

2nd step: Oxidation

1st step: Solar Reduction

ConcentratedSolar Energy

recycle

2ox redMO MO O

2 2

2

red ox

red ox

MO H O MO HMO CO MO CO

redMO

oxMO

oxMOTo

Liquid Fuels

Solar Thermochemical Splitting of H2O and CO2

H2/COH2O/CO2

O2

2nd step: Oxidation

1st step: Solar Reduction

ConcentratedSolar Energy

recycle

20 5 ZnO Zn . O

2 2

2

Zn H O ZnO HZn CO ZnO CO

Zn

oxMO

oxMOTo

Liquid Fuels

Solar Thermochemical Splitting of H2O and CO2

Qrerad

ZnO@ 298 K

QuenchQquench

Zn + ½ O2@ 2000 K

C = 5000

I = 1 kW/m2

T = 2000KQsolarConcentrated

SolarRadiation

Zn½ O2

HydrolyserQhyd

H2 ZnO

IdealFuelCell

WF.C.

QF.C.

H2O

F.C.

solar

WQ

h.r. with%58

h.r. no%35

H2/COH2O/CO2

O2

2nd step: Oxidation

1st step: Solar Reduction

ConcentratedSolar Energy

recycle

20 5 ZnO Zn . O

2 2

2

Zn H O ZnO HZn CO ZnO CO

Zn

oxMO

oxMOTo

Liquid Fuels

Solar Thermochemical Splitting of H2O and CO2

ZnO/Zn Cycle

rotary joint

quartz window

cavity-receiver

water/gasinlets/outlets

Zn+½ O2

ZnO

ConcentratedSolar

Radiation

ZnO feeder

• Chem. Eng. J. 150, 502-508, 2009.• Materials 3, 4922-4938, 2010.

• Treactor = 2000 K

• Qsolar = 10 kW

• Cpeak = 5880 suns

• mZnO = 11 g/min

• Zn yield = 50 – 95 %

ZnO/Zn Cycle

rotary joint

quartz window

cavity-receiver

water/gasinlets/outlets

Zn+½ O2

ZnO

ConcentratedSolar

Radiation

ZnO feeder

600

800

1000

1200

1400

Shutter [%]

1600

1800

2000

2200

2400

10

20

30

40

50

60

70

80

90

100

100 200 300 400 5000 7006000

600

800

1000

1200

1400

ZnO

-Tem

pera

ture

[K]

1600

1800

2000

2200

2400

10

20

30

40

50

60

Time [sec]

70

80

90

100

100 200 300 400 5000 7006000

TemperatuTemperature [K]ShutteShutter [%]

• Chem. Eng. J. 150, 502-508, 2009.• Materials 3, 4922-4938, 2010.

9 feed cycles; 131g each

Solar Reactor Technology

ZnO dissociated (g)# feed-cycles Measured Calculated 3 68.5 ± 5.2 63.95 59.5 ± 6.8 54.07 148.4 ± 28.8 223.39 224.2 ± 49.5 197.1

ZnO dissociated (g)# feed-cycles Measured Calculated 3 68.5 ± 5.2 63.95 59.5 ± 6.8 54.07 148.4 ± 28.8 223.39 224.2 ± 49.5 197.1

ZnO dissociated (g)# feed-cycles Measured Calculated 3 68.5 ± 5.2 63.95 59.5 ± 6.8 54.07 148.4 ± 28.8 223.39 224.2 ± 49.5 197.1

• Heat transfer + kinetic model validated

100 kW

A

eff 0 r

ERT

p

chemistryheattransfer

Tc k T k e H Tt

• AIChE J. 55, 1497-1504, 2009. • Chem. Eng. J. 150, 502-508, 2009.• Int. J. Heat Mass Transfer 52, 2444-2452, 2009.

10 kW

Solar radiative input 100 kW 10 kW

Cavity diameter 580 160 mm Cavity length 750 230 mm Outlet diameter 110 15 mm Al2O3-tile thickness 10 7 mm Outer shell diameter 1080 200 mm Aperture diameter 190 60 mm Window diameter 485 160 mm Solar concentration ratio 3500 3500 suns  

Solar Reactor Technology100 kW

H2/COH2O/CO2

O2

2nd step: Oxidation

1st step: Solar Reduction

ConcentratedSolar Energy

recycle

20 5 ZnO Zn . O

2 2

2

Zn H O ZnO HZn CO ZnO CO

Zn

oxMO

oxMOTo

Liquid Fuels

Solar Thermochemical Splitting of H2O and CO2

nanoparticleformation

in-situ hydrolysis

Zn

ZnOH2O H2

Zn(g)

H2O(g)mixing

H2

ZnO

Aerosol reactor concept

H2O

Ar

steamgenerator

Ar

gas analysis

filter

Balance

evaporationzone

Zn Zn(g)

T = 1263 K

reaction zone

H2O + Zn ZnO + H2

T = 573-1263K

ExperimentalSet-up

Distance along reactor axis [cm]

0 20 40 60 80 100400

600

800

1000

1200

Zncrucible

evaporation

H2O/Arinjection

reaction zone

Tem

pera

ture

[K]

Quench rate: up to 106 K/s

Tsat

• Chem. Eng. Sc. 64, 1095-1101, 2009.• Chem. Eng. Sc. 65, 1855-1864, 2010.

2nd step: Syngas Production

Reaction time (min)0 10 20 30 40 50 60 70

0

1

2

3

4

5

6

7

8

9TR = 973 K

Zn evaporation

= Zn-conversion = 90%

10-4

mol

/min H2 production

nanoparticleformation

in-situ hydrolysis

Zn

ZnOH2O H2

Zn(g)

H2O(g)mixing

H2

ZnO

Aerosol reactor concept

H2O

Ar

steamgenerator

Ar

gas analysis

filter

Balance

evaporationzone

Zn Zn(g)

T = 1263 K

reaction zone

H2O + Zn ZnO + H2

T = 573-1263K

ExperimentalSet-up

• Chem. Eng. Sc. 64, 1095-1101, 2009.• Chem. Eng. Sc. 65, 1855-1864, 2010.

2nd step: Syngas Production

nanoparticleformation

in-situ hydrolysis

Zn

ZnOH2O H2

Zn(g)

H2O(g)mixing

H2

ZnO

Aerosol reactor concept

H2O

Ar

steamgenerator

Ar

gas analysis

filter

Balance

evaporationzone

Zn Zn(g)

T = 1263 K

reaction zone

H2O + Zn ZnO + H2

T = 573-1263K

ExperimentalSet-up

• Chem. Eng. Sc. 64, 1095-1101, 2009.• Chem. Eng. Sc. 65, 1855-1864, 2010.

2nd step: Syngas Production

TR = 823 K

H2/COH2O/CO2

O2

2nd step: Oxidation

1st step: Solar Reduction

ConcentratedSolar Energy

recycle

2ox redMO MO O

2 2

2

red ox

red ox

MO H O MO HMO CO MO CO

redMO

oxMO

oxMOTo

Liquid Fuels

Solar Thermochemical Splitting of H2O and CO2

H2O

N2

H2

N2 + O2

Nitrogen / Steam flow

Gas exhaust

Internal circulating fluidized bed (NiFe2O4/m-ZrO2)

Draft tube

Conical-shaped cap

Cyclone

CO2 (or steam) CO2 (or steam)

CO and CO2 (or H2 and H2O)

O2

Concentrated solar flux

Window

O2

Niigata U., JapanNiFe2O4

SNL, USACoFe2O4

U. of Colorado, USANiFe2O4

DLR, GermanyZnFe2O4

CNRS, FranceZnO, SnO2

H2/COH2O/CO2

O2

2nd step: Oxidation

1st step: Solar Reduction

ConcentratedSolar Energy

recycle

2 2 22

CeO CeO O

2 2 2 2

2 2 2

CeO H O CeO HCeO CO CeO CO

redMO

oxMO

oxMOTo

Liquid Fuels

Solar Thermochemical Splitting of H2O and CO2

Solar Reactor Technology

Science 330, 1797-1801, 2010.

Solar Experimental Set-up

Science 330, 1797-1801, 2010.

Solar Experimental Results

2solar-to-fuel

2

heating value of fuel produced 0.8% for CO -splitting0.7% for H O-splittingsolar energy input + energy for inert gas recycling

Science 330, 1797-1801, 2010.

CO2-splitting H2O-splitting

Solar Experimental Results

Simultaneous splitting of CO2 & H2O• H2O/CO2 = 7 → H2/CO = 1.91

• Fuel/O2 = 2

Solar Experimental Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400 450

Rate [m

L min

‐1g‐

1 ]

700

900

1100

1300

1500

1700

1900

0 50 100 150 200 250 300 350 400 450

Temperature [K]

Time [min]

2.14 ml O2

g-1 CeO2

1.73 ml O2

g-1 CeO2

1.46 ml O2

g-1 CeO2

1.69 ml O2

g-1 CeO2

1.56 ml O2

g-1 CeO2

1.48 ml O2

g-1 CeO2

1.34 ml O2

g-1 CeO2

1.28 ml O2

g-1 CeO2

1.23 ml O2

g-1 CeO2

1.23 ml O2

g-1 CeO2

2.65 ml H2 g-1

1.22 ml CO g-1

H2/CO ratio: 2.17

2.45 ml H2 g-1

1.06 ml CO g-1

H2/CO ratio: 2.31

2.43 ml H2 g-1

1.03 ml CO g-1

H2/CO ratio: 2.36

2.29 ml H2 g-1

0.99 ml CO g-1

H2/CO ratio: 2.32

2.00 ml H2 g-1

2.00 ml CO g-1

H2/CO ratio: 2.01

2.17 ml H2 g-1

0.90 ml CO g-1

H2/CO ratio: 2.43

2.10 ml H2 g-1

0.91 ml CO g-1

H2/CO ratio: 2.28

2.19 ml H2 g-1

0.83 ml CO g-1

H2/CO ratio: 2.63

1.76 ml H2 g-1

0.76 ml CO g-1

H2/CO ratio: 2.31

1.92 ml H2 g-1

0.74 ml CO g-1

H2/CO ratio: 2.59

Simultaneous splitting of CO2 & H2O

30 m

m

35 mm 43 mm

30 m

m

35 mm 43 mm

30 m

m

35 mm 43 mm

Reticulate Porous Ceramic

RPC

• ASME Journal of Heat Transfer 132, 023305 1-9, 2010.

• average pore diameter = 2.54 mm• total porosity = 92%• specific surface = 11 mm-1

I

s

Radiative properties of RPC

0

10 22

-

I sexp - s

I

. cm

MC ray tracing

Change of attenuation augmentation augmentation

radiation by by byintensity absorption+scattering internal emission incoming scattering

i

4s

b i0

dII I I d

ds 4

I

s

• ASME Journal of Heat Transfer 132, 023305 1-9, 2010.

2D D

2

0 1D

Re

p u F uK

pd c cu

-7 2

1

1.353 10 444.02

K mF m

• Navier-Stokes by DNS• 0.2<Re<200• 0.1<Pr<10

Fluid transport properties across RPC

• Int. J. Heat and Fluid Flow 29, 315–326, 2008

Heat transfer transport across RPC

• Navier-Stokes by DNS• 0.2<Re<200• 0.1<Pr<10

• J. Heat Transfer 130, 032602, 2008.• J. Heat Transfer, 132, 023305 1-9, 2010

''sf

sflm

dz z

z

sf

q Ah

T A

0.56 0.47Nu 1.56 0.6Re Pr

CO2 Capture from Air

CaO + CO2 CaCO3calcination/carbonation

CO2-depleted air / CO2

atmospheric air

2

2

CO ,released

CO ,captured

n99%

n

Chem. Eng. J. 146, 244–248, 2009.

T=390 °C / 850°C

input 390 ppm

0 1000 2000 3000 4000 5000 60000

2000

4000

6000

8000

10000

12000

Time [sec]

CO

2[p

pm]

100

200

300

400

500

600

700

800

900

Temperature [°C

]

Cal

cina

tion

Cal

cina

tion

Cal

cina

tion

Cal

cina

tion

Cal

cina

tion

Car

bona

tion

Car

bona

tion

Car

bona

tion

Car

bona

tion

Car

bona

tion

850°C

390°C

• Diamine-functionalized silica gel• CO2 adsorption from air at 25 °C and 1 bar• Pure CO2 desorption at 74-90 °C and 10-150 mbar

Solar Energy

atmosphericair

adsorption

ConcentratedSolar EnergyConcentratedSolar Energy

oxidation

reduction

H2O

CO2-depletedair

liquid fuelsfor transportation

catalytic conversion

desorptionsyngasCO2

H2OCO2

Jan WurzbacherChris GebaldRoman BaderGiw ZanganehClemens SuterMen WirzAnastasia StamatiouEmilie ZermattenJonathan ScheffePhilipp FurlerGilles MaagMichael KruesiIllias HischierWilly VillasmilPhilipp HaueterMatt RoesleTom CooperPeter LoutzenhiserDominic HerrmannEnrico GuglielminiNic Piatkowski

Tina DaumChristian Wieckert

Ivo AlxneitDaniel Mayer

Alwin FreiYvonne BauerleChristian Hutter

Peter SchallerTony Meier

Marc ChambonDaniel Wuillemin