An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Post on 17-Aug-2015

30 views 2 download

transcript

An NLLS Based Sub-Nyquist Rate Spectrum Sensing for

Wideband Cognitive Radio

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg

Department of Signal and SystemsChalmers University of Thechnology

May 2011

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 1 / 21

Outline

Introduction

Problem Statement

Proposed Model

Comparison and Simulation

Summary

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 2 / 21

Introduction

Spectrum Sensing

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 3 / 21

Introduction

Spectrum Sensing

Narrowband

Energy Detection (ED), ...

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 3 / 21

Introduction

Spectrum Sensing

Narrowband

Energy Detection (ED), ...

Wideband

Challenge: High Sample Rate ADC

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 3 / 21

Problem Statement

Signal

Complex signal x(t)

Fourier X (f ), f ∈ [0,Bmax ]

Nyquist rate: Bmax = L× B

frequency[MHz]

Sp

ectr

um

0 Bmax

index L = 0, 1, ..., L − 1

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 4 / 21

Problem Statement Cont.

Active channel set b = [b1, b2, ..., bN ]

Example: b = [8, 16, 17, 18, 29, 30]

frequency[MHz]

Sp

ectr

um

0 8 16 24 32

Given B ,Bmax ,Ωmax = Nmax

Land x(t)

Find b and N ?at fsample < Bmax

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 5 / 21

Proposed Model

LLxi (m)x(t) Delayxdi 1

MΣxdx

∗d

R b

y(f )

Multicoset SamplerSample Correlation matrix

NLLS Estimator

favg = αBmax

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 6 / 21

Multicoset Sampler

Non-uniform sampling: xi (m) = x [(mL + ci )/Bmax ];m ∈ Z

0 5 10 15 20 25 30 35 40−3

−2

−1

0

1

2

3

time

x(t)

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 7 / 21

Multicoset Sampler

Sampling frequency: favg =(

pL

)

Bmax

Landau’s lower bound: Nmax < p ≪ L

Random sample pattern: ci ∈ L

x1(m)

x(t) x2(m)

xp(m)

t = (mL+ c1)/Bmax

t = (mL+ cp)/Bmax

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 8 / 21

Recall Model

LLxi (m)x(t) Delayxdi 1

MΣxdx

∗d

R b

y(f )

Multicoset SamplerSample Correlation matrix

NLLS Estimator

favg = αBmax

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 9 / 21

Configuration

Upsampling: factor L

Low pass filtering: [0,B ]

Delaying: with ci samples

Lxi (m)

Delayxci , y(f )

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 10 / 21

Frequency domain Model

Matrix form:

y(f ) = A(b)x(f ) + n(f ), f ∈ [0,B ]

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 11 / 21

Frequency domain Model

Matrix form:

y(f ) = A(b)x(f ) + n(f ), f ∈ [0,B ]

y(f ): Known vector of DFT of configured sequences

x(f ): Unknown vector of signal spectrum in the active channels

n(f ): Gaussian complex noise, N (0, σ2I)

A(b)(i , k) = B exp(

j2πcibkL

)

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 11 / 21

Recall Model

LLxi (m)x(t) Delayxdi 1

MΣxdx

∗d

R b

y(f )

Multicoset SamplerSample Correlation matrix

NLLS Estimator

favg = αBmax

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 12 / 21

Correlation Matrix

True matrix: R = E [y(f )y∗(f )]

Estimated in time domain using Parseval’s identity

R =

B∫

0

y(f )y∗(f )df =+∞∑

m=−∞

xci [m]x∗ci [m]

Reduce complexity, downsampling xdi (m) = xci [mL]

R =1

M

M∑

m=1

xd (m)x∗d (m)

Lxcixdi 1

MΣxdx

∗d

R

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 13 / 21

NLLS Based Method

Recall model y(f ) = A(b)x(f ) + n(f ) ⇒ b ?

Minimizing the least square error J(b) = tr(Ip − A(b)A†(b))R

Detection threshold

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 14 / 21

NLLS Based Method

Recall model y(f ) = A(b)x(f ) + n(f ) ⇒ b ?

Minimizing the least square error J(b) = tr(Ip − A(b)A†(b))R

Detection thresholdJmin = σ2(p − N)

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 14 / 21

NLLS method

Sequential Forward NLLS Algorithm

Typical Example: p = 10,N = 6, σ2 = 1

1 2 3 4 5 64

6

8

10

12

14

16

18

J(bi )LSE

i

Jmin

(p − i)σ2

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 15 / 21

Comparison and Simulation

Signal: Bmax = 320MHz ,B = 10MHz ,Ωmax = 0.25

Multicoset sampler: L = 32, p = 10,M = 64favg =

(

pL

)

Bmax = 100MHz!!

0 80 160 240 320frequency[MHz]

Sp

ectr

um

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 16 / 21

Energy Detection Model

Conventional ED model

x(t) x(nT )

Uniform Sampler

fs = Bmax

Filter Bank

1M

|.|2

1M

|.|2

≷10 η

≷10 η

H0

H0

H1

H1

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 17 / 21

Numerical Results

Probability of detection

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α=0.3, NLLS

α=0.5, NLLSEDMUSIC

Pd

SNR, [dB ]

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 18 / 21

Numerical Results

Probability of false alarm

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 100

0.005

0.01

0.015

0.02

0.025

α=0.3, NLLS

α=0.5, NLLSEDMUSIC

Pf

SNR, [dB ]

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 19 / 21

Summary

Wideband Spectrum Sensing

MulticosetSampler

NLLS method

Comparison

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 20 / 21

Thank you for your attention

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 21 / 21