Application of Mass Spectrometry to Coordination Chemistry

Post on 21-Nov-2021

1 views 0 download

transcript

INTEGRATED PAPERINTEGRATED PAPER

�����������

Application of Mass Spectrometry to Coordination Chemistry

����Ryuichi AG6@6L6

��������� Department of Chemistry and Materials Engineering, Kansai University,

Suita, OSAKA, JAPAN

Application of electrospray ionization mass spectrometry (ESI-MS) to coordination chemistry has beenextended in recent years. Here, we examined a number of polynuclear ruthenium(II), rhodium(III), and cobalt(III)bipyridine complexes by ESI-MS. It was shown that ESI-MS is a useful tool for identifying metal complexes anddetecting contamination, because ESI mass spectra for the complexes displayed a mass pattern simple enoughfor easy structural assignment. In coordination chemistry, the actual advantages of ESI-MS are as follows: (1)ionic metal complexes exhibit simple mass spectra that can be analyzed easily using the characteristic isotopedistribution of transition metals, (2) the metal complexes yield multiply charged ions with loss of counter ionsso that the multinuclearity of polymetallic complexes and self-assembled complexes in a solution can bedetermined, and (3) most importantly, since preformed ions in bulk solution are extracted to the gas phase in thesoft ESI process, the observed mass spectra qualitatively reflect only the intact ions in the solution. We detectedunstable species of Se or W complexes that exists only in very strongly basic or acidic solvents using thenanospray technique. Moreover, we also studied the application of chiral recognition using antimony potassiumtartrate and the characterization of the self-assembly of ferrocenedicarboxylic acid in a solution by ESI-MS. TheESI technique combined with a flow-through reaction cell is a powerful tool for the detection of reactionintermediates and primary products. Finally, photosubstitution of Ru(II) complexes, photo-induced metalrelease/inclusion of crowned malachite green leuconitrile derivatives, and electrolytic oxidations of Ru(II) andOs(II) complexes were investigated using online ESI-MS systems.

(Received August 20, 2008; Accepted September 10, 2008)

1. � � �

� ���������� X����� nuclear mag-

netic resonance (NMR) ���� !"�#���(mass spectrometry: MS) �$%&%'(�)*+,-.��/� 0�,� 12�34�.(� �X�����NMR����5(��678.9:��;� #�����5(��6<='��>? "$".6%� @A� � �����/#����65B��C'(5D�.E>? FGH.IJK��/L(MNOHPQRNS#���TU�VWX���Y�� Z[�6\]/� -��^�/_�`a�b�cdef/gh� �id�����6jX�.E>k�6l.m/L(�no%'(?p�:q�5r�pgh� ,stuW/vswd.Y�6x��/� �y�z)IJK� (electron ioniza-

tion: EI) ��5D�^�{|�"�$%IJK�}(~�,8"�?">6E��gh� �#���,�FGH.IJK��/L(z�IJK� (field desorption: FD), V��)��IJK� (fast atom bombardment: FAB)

�� ��IJK#��� (secondary ion mass spectro-

metry: SIMS), NS�S�� (laser desorption: LD) ��5E�<='��>?��� FAB�5(� �:q�#���,L(`a���{�C�>6� ��)$%�RPHK����� ��)����5rU������5(IJK�6�%'(�/� �)IJK��a6�CB� Q�OH�6��.�68�/L(?@A� 5�FGH.IJK���"�MNOHPQRNSIJK� (electrospray ionization: ESI) �1)��H� OQ¡¢NS�S��IJK� (matrix-assistedlaser

desorption/ionization: MALDI) �2), 3)6£uC'>? ��� ESI-MS��¤,� ¥YFGH.IJK��/x¦IJK{§ 5Bcd/�(k�/L(4), 5)? k�¨©{ª$"�_xB�gh� �#���� ESI-MS6��C'��(?

1990A� Chait�«�SR6)�5E�¬��gh� Ru(bpy)3Cl2 (bpy­2,2�-bipyridine) � ESI�QQ�OH

Correspondence to: Ryuichi AG6@6L6, Department of

Chemistry and Materials Engineering, Kansai University, 3�3�35 Yamate-cho, Suita, Osaka 564�8680, JAPAN, e-mail:arak@ipcku.kansai-u.ac.jp����� ���������� ®564�8680 ¯°±²³´ 3�3�35µ¶·, 2007Aa¸µ#����¹�¹º{»º">?

J. Mass Spectrom. Soc. Jpn. Vol. 56, No. 6, 2008

�247�

�������� ��������� ��� Fig. 1

���� Ru(bpy)32���������� ��� (col-

lision-induced dissociation: CID) ��� bpy������������� ����� ESI-MS � !�" # $��%���&'�� �()*+ (II),-.-/��0" 12 !��!�3 ���45�6�78�9�����:�1;<�=> � ?@��AB�C�D��E��BF�� G �H2 ��;<�=>��I�J;<�=>��K�L��6FB2 � Ru(bpy)3

2� MG �! 8NO"$ ?@�P�Q&��BF�� ��RS2 T0" [URu(bpy)2(CN)2V2Ru(bpy(COO)2)2]2W

18"$�6XY�(Z#[\�AB$]2TiO2%! �^# _& �F��`'a�#(�b �2c3���)����0" de 18NO�&��fg��# $� h*a�+iBF�� �j&�0" �ekA��]2G " �,�����l-�&�X.mn�o�p/&!�" ��AB2ESI-MS��FB0q���r1�2����]�� 3e4��12 !�" ESIs��tuv� w5�&?@2 x������yk z�6�7 mass

spectrometry/mass spectrometry (MS/MS) 6����%� {|�}FB~�� ���2 " NO�6XESI-MS 78�y�AB2 ;�uv����>�|9 ���:���"$���meA������ ESI-MS

$�;�}FB����� <=��'B28"$2��"$2 NO"$&� "$>3 Myk?��@��A����,��]������ � ����� ESI-MS

�61B�> "$z� ?@�C_&������

����

2. �����������

ESI ���Nz��AB2 B�>����D�ABF��� (preformed ion) ���&E��F��u>��"G����GABQ����G�f��2 �H��XI���BF� A��'B2 !��2 Cz�2 �����E}!�" &� ���a��1 ESI-MS�h*��� ���2 ��v�N:�1Na���J��9�t� ¡2 :�10¢ �j���v�N�£KEESI6�C_��� A�A&��2 B�>�>a���ABD��¤e12 �H� ESIs��tuv��2��1p/��� A�A2 1) ESI |9�9��JNO��¡¥u�"$2 2) ¦F¢N\��FB�� ��bNO¢N62 3) Y�§-!����¨© ���\�L��M6&��7�AB2 ESIs��tuv��2����]��M2MALDI612NªH3� «O�o¬�P­e�b� MALDI-time-of-flight mass spectrometer (MALDI-

TOF-MS) ��'B 105 DaQ® «O���h*���A��'B2 ¯�°u«2 R±N?2 0¢&� y ²��6�7ek²�� ��O���7���BF� A�A2 MALDI1 ESI�S�B³´v&���N6�&F �" NO# $�;1µ&F�

Fig. 2 1 Ru(bpy)3X2 (X¶ClW, ClO4W) Y�v)v-

�B�>�6X·����>¡ ESIs��tuv��2 �Y)�� ¸¹�T��E ��� EA� �tuv��J�> Uº�"»ABF &�S2 ��

Fig. 1. Structures of bidentate and bridging ligands. bpy¶2,2�-bipyridine, bpz¶2,2�-bipyrazine, dmbpy¶3,3�-dimethyl-2,2�-bipyridine, ampy¶2-(aminomethyl)pyridine, dmbpbim¶1,1�-dimethyl-2,2�-bis(2��-pyridyl)-6,6�-bibenzimidazole,bbbpyH2¶2,2�-bis(2��-benzimidazolyl)-4,4�-bipyridine, dmbbbpy¶2,2�-bis(N-methylbenzimidazole-2-yl)-4,4�-bipyridine.

R. Arakawa

�248�

������� Cl� �� Ru(bpy)3Cl�� ClO4� �

������������������ �� �� ! "#$�����%����� ���&'�()*���+ Cl�,ClO4

�-.�� /�&'��0$-+Ru(bpy)3(ClO4)���+ Cl��1����-.�������� 2&�34 Fig. 1 �56678 #+9:��;���<2=�0$�>� (intact) )*�?@A24��BC������� � � Ru(tpy)2X2 (tpyD2,2� : 6�,2��-terpyridine) �1��EFG?H�� 2I2 ESIJ&+MALDI�-���&56678 #� FAB�1��K�LM:��;?NO��P24�������+QR-.�� /���+ %�S�T��UV�WX���YZ��� FAB-+T�+5 "[86$��������0UV-����� ESI-+\��2&��]�0�$������-�M(G���4���MALDI-+^_�`ab[ c�����I2&T�?5 "[86��d���2�efFgh��� 2&�34 ESI�MALDI�678 #+i��0��;UV?�j��P24�k��l�mn�op� ESI-MS�q�c�����rsI.�� 1) )*�t^_l�678 #+ >u v�1�wk�xy �z Na�!{���|})*��>~2k��-��k678 #?H�1�|�� /24��^_?�<l-+/�^_"����`a�?�s�- /�?��24l����#��k�� 2)

ESI +�)*��\$���>~��|})*�?(%�r@A2 /�}�?678 #I�#�������-���- |�lo���0$����UV����

(-.�� 3) ����&k�+ ESI��� k)*�h��� preformed)*���j�0$I�9:��A����- NMRz�9h�'����E�K�0$�)*������24������-��� �kZ� ESI-MS-����9:�)*�+����0$�����)*�?�%24���- ��)*�h���K�$t v?)*�h24�( �?�K�-+k��

3. ESI�������

�)��v�*z ¡#¢a�*�mn��&k)*�t� Ru(II)� bpyl� ESI56678 #+�|r+£��4��7)¤16)� ,�v C3S5

2� �^_l+u���t?�� /�¥h�¦��t?��&'�§-��&�4��� ��� C3S5

2� l+.¨k/)*�678 #�����17)¤22)� J& ��^_�|�©U*"ª5al�����34 ESI-MS�l�|��?«���&'�(k��-.���?H2&23)¤31)� ��-+ "�|�l� ESI56678 #�"¬�s�4�­���

3.1 ����Ru(bpy)2 dMe(ClO4)2� Ru(bpy)2 BgH(ClO4)2�N)*�678 #-+ /�®� 2})*� [M�2X]2� �¯a6°a8?H� (Fig. 3)� ,�v dMe, BgH �±²+Fig. 1 �H�� Ru(bpy)2BgH(ClO4)2+ ,�v BgH��$t�xy �?�34���- 1})*�� [M�2X�H]��@A���7), 8)�Ru(bpy)3Cl2zRu(phen)3Cl2 (phen

D1,10-phenanthroline) � ESI56678 #�o�4 ESI)*�³0�6´5aµ�¶ ·¸1 ¡#¢a DV¹� 90 eVºc�k�� CID��342»,�v�\$2& Ru(bpy)2�, Ru(bpy)2

� )*��>~���

Fig. 2. Positive ion ESI mass spectra of Ru(bpy)3X2 (a)XDCl� and (b) ClO4

� in acetonitrile, where L isbpy. (Reprinted from ref. 13 with copyrightpermission.)

Fig. 3. Positive ion mass spectra of Ru(II) mononuclearcomplexes in acetonitrile: (a) Ru(bpy)2dMe(ClO4)2

and (b) Ru(bpy)2BgH(ClO4)2. M represents amolecule, L is bpy, and XDClO4

�. (Reprintedfrom ref. 7 with copyright permission.)

Application of Mass Spectrometry to Coordination Chemistry

�249�

���� [Ru(bpy)2]2dMe(ClO4)4, � [Ru(bpy)2]2BbH2

(ClO4)4,������ 2� � 4������� [M�nX]n� (n�2�4) ������ (Fig. 4)���� !������"#�$%&��'(����)*�����+�� ,-��.) RuL2

2�, RuL2B2� /L�bpy, B�01,-2 �����3��� (Fig. 4a)� BbH2,-������� ���45� (pKa�5.0) � �6789�� Fig. 4b �3���6:� [M�4X�H]3� �;'�<'��=>?9��

Ru(II)(bpy)2dPrRh(III)(bpy)2(ClO4)5�@A������2� � 5�B��CD����.)������EF���7), 8)� Co(III)(bpy)3(ClO4)3����������GH��) Co(II)��������I�J�� KLMN� O��P�QR������ Co(II)���ST��*��=9� U�VW�.?� ESI���X�YZ�[\��]^_�=�`�B)� CID�6� Co(III)aCo(II)GHb��c�5�J�� �de'&�f DV�50 � 100

eVgh?i�jkl'mno�p)�IM� Co(II)�����[6q bpy����8��rs�no.)� .)�>? Co(II) ����tu� CID �6� Co(bpy)3

3�aCo(bpy)2

2��bpy��6:=�`�vw����3.2 �����/��������Cx�� �x���yV-�z(��^[6qz(��^{���.?�Fig. 5� star-burst|}��� [Met(II)

(bpy)2B]3Ru(ClO4)8 /Met�Ru or Os, B�� NV-m~���01,-2 � ESIe�����m�{ (Fig.

6)8), 10), 12)� [Os(bpy)2dmbbbpy]3Ru(ClO4)8^A��[9?� 01,- B�dmbbbpy���5�z(��mK>?9=9�� 3� � 8��������{�? [M�nX]n� (n�3�8) ����6:����� ClO4

� ��

��6����tuJ�� U.?������'������{�������EF��?9=9 (Fig. 6a)� ��� B�bbbpyH2� bbbpy2� �01,-��z(��^[6qz(��^�����U�������J�� .)�>?� �������� z(��� z(�� o���A�p�6�9M9M=����������� (Fig. 6b, c)� . .� �!=�"!���=9�� #�����������$m��{�I���=9�9M9M= star-burst|�}����[9?� ��5z(��mK)=9����A� ;'�<'�� 5����� [M�5X]5�J�� %&�� B�bbbpyH2����[M�8X�3H]5� B) B�bbbpy2� ���� [M�2X�3H]5�� 5�����;'�<'��=�� 5������+�=�� star-burst�����5� ¡.?9��¢���� [M�5X]5� ��������£¤D¥� [Met

(bpy)2B]2� ����� ClO4� �U��� 1¦��§A.

)���=�� %&��£¤D¥�&�$%�$%&��'(����¨��=�6:�� �£¤D¥� � 1¦��z(��^.)�� [M�8X�3H]5�[6qz(��^.)�� [M�2X�3H]5��+�J��¢����I�6:� ESI-MS������%��'(=©)J7� U�������P�������m�ª.?9��¢����}���� CID���� «*}¬­|�"!®¯m�9?� d°<�±'²� 250³� i�jkl' 50 eV,

Ari�´��f( 1.2 mTorr�µ¶·>)� ¸5=���mK)=9}���� CID������ bpyB)�01,-� O2

� �+¹.)��������)�I�6:=º»�� Met(bpy)3X2 (Met�Ru, Fe and X�ClO4

�, PF6�, Cl�) � CID �[9?K����� bpy �

O2� �6:=,����+¹.) [Met(bpy)2X�]� (X��

Fig. 4. ESI mass spectra of Ru(II) binuclear complexesin acetonitrile: (a) Ru(bpy)2dMe(ClO4)2 and (b)Ru(bpy)2BgH(ClO4)2. (Reprinted from ref. 7 withcopyright permission.)

Fig. 5. Schematic representation of the starburst-typetetranuclear complex. btfmb�4,4�-bis(trifluoro-methyl)-2,2�-bipyridine.

R. Arakawa

�250�

O2�, F�, Cl�) ��������� ��������

��������������� CID�� �!����"#$�%��

3.3 ����&�'(")�*�+��,-��� ./�

ESI-MS01"23�%�� 4�5� ����67 8�����9:;<=>?�*��@A�BC��D��%�� ����EF�GHIJKL�*�67�MN����%�� O�PQ�>?��RS� Pt'((NH3)2Pt(Cl)2 " NaT67(�>? ESIUVVWX�H�YZ�[�32)� \� Ag(I)"]^ _^�)>?GHIJKL�*�F`�67a����� bc Henderson

R33)"&�IHdeHKLE� Ru3(CO)12�f�Ag(I)

�*�gGHhijk (OR�) �*��l7�����F [MTAg]T, [MTOR]� �*��>? ESI-MS�ma������no>?���pq�r�st(��]Euv�w� xy�I�zHu{�)>? 0.8 V |}~ ���f���X��V�

���S��[ �u��;;�?��������u�E���]E��������?��IHI�*������� ������u�E���" KebarleR34)

� BerkelR35)��?�>����S?���\� �f&�Ge*��vA�&��vA��C������? '(I�*��������%�36)�

4. MALDI�����

c� � ¡¢£@A¤ (self-assembled monolayer:

SAM) "¥¦a�§��>?�¨�S?��� Auu{�©ª>?�*�r���g«^u{�>?�� atomic

force microscopy cantilever-tip �E�©ª>?��¬­E�@®�ma�¦a�67�����9�%��\� ¯V��°V�@A±²E�³���>?jX�´iV�J� SAM���no�S?��� SAMµ@®"¶� SIMS�·-S?[��

Ultraviolet (UV) ��¸�¹���? n-alkanethiol

(C10, C12)/Au SAM º�»�]E��37) alkane-

Fig. 6. ESI mass spectra of tetranuclear complexes in acetonitrile: (a) [Os(bpy)2dmbbbpy]3Ru(ClO4)8 and (b) [Os(bpy)2

(bbbpyH2)]3Ru(ClO4)8, [Os(bpy)2(bbbpy2�)]3Ru(ClO4)2. M and X represent the complex and ClO4�, respectively.

Application of Mass Spectrometry to Coordination Chemistry

�251�

thiol SAM � MALDI ��������� �������������38)� ��������� !"#$��%&'(�� !)*+�,&-./�01� ���23!4567��39)�8�9:561;7< �6=$/>?%@561;7 SAMA� ;B6C S�AuDE$�F56G SAM$HI� JKLM SAM�9:ANOG(�

'0G< ��$A 3PQ� disulfideDE�RS)�T1CU RuLM�VWX SAM1-3 (Fig. 7) ��FT1� Y6(�MALDI���Z�[�\]/U;1^_740)<MALDI ���Z�[A� ���� DHB (2,5 -

dihydroxybenzoic acid) �`�T1� FinniganMAT

V2000 ��;1a23!b�c$deTG<

Fig. 7. Structures of SAM1, SAM2 and SAM3. (Reprinted from ref. 40 with copyright permission.)

Fig. 8. MALDI-TOF mass spectra of SAM2: (a) MALDI and (b) LD. (Reprinted from ref. 40 with copyright permission.)

R. Arakawa

�252�

SAM1�������� ����� � ����������� ������� S�Au��������� [M�2X H] ! m/z 1009 "#$��% �&�M��'!�X����� PF6!�(%)����*+ 16, 32,

48 Da,��-.����#$/��% )�0����� sulfoxide, sulfinate/disulfoxide, sulfonate "1��2�$�3"(4"5678!9:;�<)=!>(%/0"� ����!������ 2�?"1�(<[2M�4X H] ��� m/z 2017 "#$/��)=@0614 disulfide�� (RS-SR) !AB���=CD�<% )�)=�E�"FG�� SAM� ���=� ����4� SAM�'��HI �JK<)=!>L�;�<% M?=Au!��/N;�< octanethiol��������#$/�K@O�%

SAM2 ������"P�; (Fig. 8)� 1,4-thiobutyl-

phosphanate4QRST8�� base layer @0���;� XU PF6 ������� [M� 2 X� Zr�2(SC4H8PO3) H] m/z 725 "VWX�4YZ/��%)�[@" m/z 707, 644 "\�WX�!YZ��% )�0� m/z 725 ���@0]I^�7�������"1�(<% _�^`��!�K� LD _������4�� )�0����&:a�a�4#$/��%SAM3������� SAM2 =��K�����4bO�% SAM1 ���� benzimidazoyl "���� N-

octanethiol���K@O�� SAM2, SAM3 4�N-octadecyl������3c� SH!�d alkane

4b+�ec�f�!��K��g=CD�<%^�7�h�ijkl4mn�� SAM2, 3 ���� ���� base

layer !op���!YZ4.K@O�% )��� alkane-

thiol SAM �qr4� thiobutyl ion YZ/�K�=�st3��u=v�(<%LD�����4��MALDI*+ fragment ionABI(w� [Ru(L)(tpyPO3)], [Ru(L18)

(tpyPO3)] "1�(<����YZ/�K@O�%

5. ESI-MS���

ESI-MS�� xy�K���8�4YZz��{��4� �|}?��~���"��4b<% ��������X(<���(���"���|��!�+�:;��|}?� AG�!��"YZ���4.<�����ESI-MS!���� ����|�����"��K��4b<)=!��<%

5.1 ���5.1.1 �������� ���ESI��������(���"������|��!�+�:� ESI-MS��!���� Ru(II)M?����'���|"|����"d�;��<41)�46)% ���'!�dE M?�!P*¡���'���|��Scheme 1 �*s""¢#"�|£p=¤¥0�<% ¦�§$4 ���'¨�����}?�©ª«%/�;�<% ¦�*sK}?�©ª�� RuL2BX2 [LUbpy, BUdmbpy ¬�� ampy (dmbpyU3,3�-dimethyl-

2,2�-bipyridine, ampyU2-(aminomethyl)pyridine), XUClO4

�] �M?!�;­@g<)=4.<42)% Fig. 9b

�� Ru(bpy)2(dmbpy)(ClO4)2 �®��j�^� (AN) ��" Xe����¯°� ±&'²420 nm³ !´µ��=.�¶��������!>(% �´µ�K�=.������ (Fig. 9a) =(·(<=� �|AG�� 2 � RuL2

(AN)n2 (nU0�2) = 1 � RuL2(AN)2X ���YZ/�;�<% /0"� )�0�����|}?=¤¥0�< RuL2B(AN)2 = RuL2B(AN)X ���� (KD¸ ���' dmbpy�¨����}?¹g;�~���/��% )�*sK¨����}?� Ru(bpy)3

2 IRu(bpz)3

2 (bpzU2,2�-bipyrazine) �º4�YZ(<)=�4.K�% ��|"*O;AG�� 5����¨�}? RuL2B2 �»¼�X����;�=�M?")<@� ¬���*AN=���;¨�}? RuL2B(AN)2

"K<@����@4b< (Scheme 1)% »¼�X�8"

Scheme 1. Stepwise processes of thermal and photoligand substitution of metal complexes withbidentate ligands. (Reprinted from ref. 42with copyright permission.)

Fig. 9. Positive ion ESI mass spectra of Ru(bpy)2

(dmbpy) (ClO4)2 (dmbpyU3,3�-dimethyl-2,2�-bipyridine) in acetonitrile (AN) obtained (a)without irradiation and (b) with cell irradiation(l²420 nm). L is bpy, B is dmbpy, and X isClO4

�. The underlined ions represent inter-mediates with a monodentate B ligand.

Application of Mass Spectrometry to Coordination Chemistry

�253�

���� dmbpy��������� ��������������������������� ������ dmbpy� �����!��"#�$��%&�'()� *�+,-�.&����� dmbpy����/0123452 dmbpyH6�"#78��)�

Fenn9�:/�.&�� ;<=10>/<:?� @)A B��+CD�EFG�F78��)� H���'�� I�A �� 0.5 mm��7� Taylor-Cone, �7�1 mm ��B� ColumnJ��A ���=:02���.)�KL��M�&�NB� PlumeOP%&��)� Plume�� @)��A ��Q�� 1 mm. J����� 10 m/s'()� *�J�� �R�S104T�U!78)� ��.�%"V�WXY�Z%)�[\'�+3C�[�]��#^)���� H���OP� 3 mm�8� Plume$%�+,- _>/<:,-` ���� a�,-�\b�Z%)cd&452�"#e)���'f%O&�� �O�� '(����!�� RuL2B(AN)26 �RuL2B(AN)X6��&f��g)e)���'f�� cd��OP452�"#e)��*e)?!�� a�,-�2 min ����>/<:,-� 10 ms �+��'� .�+h,��!��g)�$�'()� Ru(bpy)2 (ampy)

(ClO4)2 �a�,-� ���� '(�-.�����ampy (Fig. 1) ����!��"#'f�� 7P�� -/i0j' ampy� 2��1k0i3��lm4n2��Ru(bpy)2(ampy-2H)26�cd�"#'f��

5.1.2 ���������� �����op1=0nqr��+�.&�3b&�Zs3�t��� uv>w=1��23e)xy'()� +�.)&s�z{�$�'()��� |�s&}����~�������8��)� �3� =��2;:����4452���56s��&�7�e)� ���&�� =��2;:����89��op1=0n�==��23b&�� +�.)�4452��d�z{��:'f)� J�'� �;�<��4452��d�+z{�=��� 1�o����2���=��2��89��=��23���419�:2 [bis(crown ether) malachite green:

BCMGCN] 3b&�>=��� BCMGCN��4452�����?'�!'()� �O�� ��+,-�.)BCMGCN��?23�@�4523�.&�������ft����4452�A#78) (Scheme 2)� =��23���419�:2���d+z{'()�4452� �¡¢/A#£B� ESI-MS'��g)��¤¥�~�'()47)S51)�

BCMGCN� Li6, Na6, Ka6 452�Cl�¦a1�1��-A��?� @)§452>w=1�� Fig.

10a �¨e� =��2;:�����4452��d�De) [M6metal]6 �452� .©�4452� 2ªJ8«8�=��2�� �¡*8�452�g)78�� ��'M� BCMGCN%���e� ED� 15-=��2-5F8��G'�� Na6 ����Hf%��d56s�¨e� >w=1��¬P8).��K6��� �¡­

��� ���=��2�'�®I'()� e%�¯�BCMGCN�J�e)���=��2;:���' K6 �°¢¡�±����d���)� �3� lm=��23CMGCN'� Na6 ���7�e)��� ESI�>>w=1�OP²K'f)��4452��d��=��23���419�:2�op1=0nqr�Hf�³´e)�µ¶P8)� 30L!���+,-�.�� -A�M·OP¸·�23e)�+Zs3��4452�A#��%�)���%¹º�Fig. 10b �¨e47)� ��¶»� BCMGCN/K6Y��>>w=1�'�� +,-e)�� �?'K�P8����

Scheme 2

Fig. 10. ESI-MS spectra of biscrowned malachite greenleuconitrile (BCMGCN) and equimolar MetClO4

(Met¼Li, Na, and K) under (a) dark and (b)photoirradiated conditions in acetonitrile.UV-light of 240�400 nm for 30 s.

R. Arakawa

�254�

���������� ������� [M�CN]������������� ������ !"#$%&'(�)*����+��,-.�/�01,2 3456�BCMGCN0� all-or-none7489��:;<�=�>?0@,-.AB/��2

5.2 ��������ESI-MS�CDE� FG7�HIAJ�4DKL�MA�N3,-.�OP0@,2 -�QA�R��.�E� �S�TU:VS�3,W��HXYU�Z!A[\�� ] ^_`a����M�HIAJ�b,c��d5�ED,2 -�e0�HX -ESI-MS�fg�hL�0�eie4�jAkl0D,2 �.mn� o�p!TJ�qHrAHXZ!�Hst�uv3,-.� wx�HX��y3D z �#{|014D-.� B+}~�wx��D-.4�0@,2 -�$��jQ�� YU����0�����7�HX��4D-.��,J�0@,2�-0� HXZ!�L?��WA���E� �s���s��.�s.�t������:��A[���Hs���UYU�Z!A����2 ��HXZ!�hL�� [Ru(bpy)3](PF6)2, [Os(bpy)3](PF6)2 �FHM] ��B+�������2 �$�� [Ru(bpy)2(en)](ClO4)2 (en�ethylenediamine) 8��HX] `a�C�,� ��|

0����D`aKt�AB+����� |A��,52)2¡¢)* Ru, Os � 2£C�¤ 3£�¥M£A.,-.�01,2 �-0� HXZ!ADE� �¦K�)*8��¥M£A 2£. 3£.�t0§¨��©3,-.�>?0@,2 Fig. 11 � [Ru(bpy)3](PF6)2 �FHM] :ª�T!0@,2 m/z 285 � 2£�� [Ru(II)(bpy)3]2� �«¬����­®¯.F°3,2 ��UYU�Z!�1.8 V [vs. ��±U²!Hs (saturated calomel elec-

trode:SCE)]�H¬A#�EHX��.1�m/z190� 3£� [Ru(bpy)3]3��³{��, (Fig. 11b)2 [Os(bpy)3](PF6)2

�´zJ«�� 3£� [Os(bpy)3]3� AB+01,2[Ru(bpy)2(en)](ClO4)2 �� µZT¶T·!K�CDE

Ru(II)¸Ru(III) �§¹3, 0.96 V (vs. SCE) �>º4] ^_»AJ¼2 ��E� 1.15 V�CDEHX] AdR

Fig. 11. Positive ion ESI spectra of [Ru(bpy)3](PF6)2 inacetonitrile solution by dissolving 0.3 mM ofthe complex together with 1.0 mM of thesupporting electrolyte LiCF3SO3. Theelectrolysis is (a) o# and (b) on. The insetshows the isotope distribution of [Ru(bpy)3]2�.(Reprinted from ref. 52 with copyrightpermission.)

Fig. 12. ESI spectra of the 1.0 mM acetonitrile solutionof [Ru(bpy)3(en)](PF6); the electrolysis reactionis (a) o# and (b) on. (c) The ESI spectrum ofthe labeled complex [Ru(bpy)3(ed)](PF6), whereed�H2NC2D4NH2 during electrolysis. (Reprintedfrom ref. 52 with copyright permission.)

Application of Mass Spectrometry to Coordination Chemistry

�255�

������������� �� ������������������ ����� ������ ��!��"�#� �$ Ru(III) %&'�()*������+����,"���� Fig. 12 -� [Ru(bpy)2

(en)](ClO4)2 �.��/�'�� '0 1$�2� ESI

3445678���9�� /�":��2-� [Ru

(bpy)2(en)]2; � [Ru(bpy)2(en)](ClO4); �'��<="$(Fig. 12a)� 0.9 V (vs. SCE) �/"$�2� m/z 237 � ����-� /�":��2����>:?�������-/�@A� B�C� 4D:��'� [Ru

(bpy)2(en-4)]2; �B�C� 2D:��'� [Ru(bpy)2(en-

2)]2; �EF"������9G�� (Fig. 12b)� HI�� � [Ru(bpy)3](ClO4)2 �/JK�LM� B�C�2N$- 4D:��'�-O��2:P?$��� ����- bpy����-:Q� en�������R�?�������2�� "$�?�� ��S��'�-T�U��������MeyerS��,"$)*����!��V�S��� "P"� WX#.��!��Y�#�� [Ru(bpy)2(en)]3; �'�-<=�2:P?$� N$� Z����[�\��!��V�S�� en�����]��"$ [Ru(bpy)2(en)(AN)]2; �'�-O� �:P?$�

[Ru(bpy)2(en-2)]2; �^���SP���$_�� `&a������`&a����bc���["$�de� [Ru(bpy)2(ed)](ClO4)2 (edfH2NC2D4NH2, ethylene-

d4-diamine) �JK�g?$� /�@?�� [Ru(bpy)2

(ed-6)]2; � [Ru(bpy)2(ed-3)]2; ��'�h�����2Q:?��� (Fig. 12c)����- [Ru(bpy)2(en)](ClO4)2

�ie@AWj��Y�� ��LM� MeyerS��k"$�\+ �lm��� '�n��/ ESI-MS�@?��!�o":)*���p�!��#q$%r<=������2$� &�� /s8�'tA�(uv�\s8�'�n���Le"$ ESI-MS�)��� *w+: Cu(II), Zn(II)

� Phenoxyl Radical ��53)x55)�@y�\�!��<=������2$56)x59)�

5.3 ��������� ESI�� �#,�� -hrhz{./��� ESI-MS-� 4|a}��E~�z��=�$_�T��+�o"�Y��B���0�������2�� D:Q��$_�� �*4|a}1�@�C� nL/min�23��4|a}"T����4 ��5�67�Y�60), 61)�

5.3.1 ����� Se�������sa�-��8sa��9+�sa�� Se8:�� ���W.� ��S���sa�-#,�:�./�-./":�� "P"� hz{�����"�;S�� DBU

(1,8-diazabicyclo[5.4.0]undec-7-ene; pKaf12.5) ( DBN

(1,5-diazabicyclo[4.3.0]non-5-ene; pKaf12.7) ���sa������� sa��#<./".������=���� ��@X:>�8N$-�8�hN$-hz{�./"$�2�.���v�?�@/����-c7�

Y�60)��8sa����� DBU�@y DBN�.P"�AB.��C�"� T���b���s7�7�8���"��D.����� DBU���'�45678�-� [M;H]; (m/z 153), [2M;H]; (305) ����'��<= �� (Fig. 13a)� DBU� Se�.P"$.��45678(Fig. 13b) �-� S� [(M�2H);Se;H]; (m/z 231),

[2(M�2H);nSe;H]; (381, 461, 541, and 621 for nf1x4) ��'��O� ��� m/zE- 80Se�{��� ¡"$� sa�-C¢� ���W.� £�¤-� m/z

461 (nf2) �¥}6� ������ T���- [2(M�2H);2Se;H]; � ¡E�#F���

m/z 461 �'��|¦§67�'�344567845678 (Fig. 13c)�-� [(M�2H);H]; (m/z 151), [(M�2H);Se;H]; (231), [(M�2H);2Se;H]; (311), [2(M�2H);Se;H]; (381) �0n¨©�7�'��<= ��� "$�?�� m/z 461 �'�-� Se� DBU����(M�2H) PS^F ��Ge��'� [2(M�2H);2Se

;H]; � + ��� T�H� nf1, 3, 4 ��'��.�� &�LM�IS����� T�S��'�W DBU���� 2��� SePS^F ��Ge��'��Y����tP�� Se�Ge��'��h�-�C�ª 1«!�t$?�45678�+¬�-:Q� [2(M�2H);nSe

;H]; �­J¥}6h�-� 70® (nf2), 17® (nf3), 9®(nf4), 1® (nf1) �Y�� &�� DBN� Se�.P"$.��45678����� [3(M�2H);16;H]; (m/z 383), [3(M�2H);Se;H]; (447), [3(M�2H);Se;16;H]; (463), [3(M�2H);2Se;H]; (527) �<= ��� m/z 447 �¥}6� ����- ¡E�#F��� N$� m/z 447 �'��|¦§67�'�344567845678PS� [2(M�2H)

;H];, [2(M�2H);Se;H]; �0n¨©�7�'��<= ����� DBU� &� DBN���� (M�2H) �Se�Ge��'��Y����tP�� Se�./����Ge�-� DBU�ie- DBU���� 2��PS^F �� #K DBN�ie-���� 3��PS^F �������tP�� "P"� T�@-�SP�:��

Se�hz{���� DBU��./���"��Scheme 3 ��\��, ��� N¯�8sa��xSe�Sex Le�#<� DBU�@A°� �� ���sa�±²� Se2³ �EF��� �� Se2���@� DBU��PS�����\�R�A� H2Se2�E~���W� a,b-*AB����EF��� ´���� a,b-*AB����Se2��\"e� (1)�EF"� ���WX 1���*AB����µyL�"� ����� (2)�EF���¶+ ����·� H2Se2�EF�¸P_�$_�� DBU�sa���\ª� sa� 1M��J" 1-¹¦)¹º� 4M������N�\ 1$� IS�$»���O���-GC-MS�)�� C4H9SeSeC4H9� + �$� "$�?�� Se2� DBUPS���¼2P��� H2Se2�EF"$

R. Arakawa

�256�

Fig. 13. ESI spectra of the 1.0 mM acetonitrile solution of [Ru(bpy)3(en)](PF6); the electrolysis reaction is (a) o# and (b) on.(c) The ESI spectrum of the labeled complex [Ru(bpy)3(ed)](PF6), where ed�H2NC2D4NH2 during electrolysis.(Reprinted from ref. 60 with copyright permission.)

Scheme 3. (Reprinted from ref. 60 with copyright permission.)

Application of Mass Spectrometry to Coordination Chemistry

�257�

������ �� DBU��� ��������1H-NMR�������� d4.2��� d5.3�������� !"#$%�&�' DBU(���)���%*+�,-.��%/�01.� �'��2345� Scheme 3 �6��78�,-.�

5.3.2 ������������ �������������

�9:�;�<�: (HSO3F; pKa=>10) 0 ?�@AB����CDEF�G�H��I���J�K�(M(CO)(NO)2; M=W, Mo) ��L% MN��O�',-���(�P'��K�����.��QR�0S.�P�0 HSO3F����-� ESI-MS�. [fac-M(CO)

(NO)2(SO3F)3]> (M=W, Mo) �TU�VW�61)� V�QScheme 4 XY,Z[��� Fig. 14 � m/z 568 Q [W

(CO)(NO)2(SO3F)3]> 0S.���"#$��\� �Q]^��_��.� 15NO��-��1�WK�Q 14NO��1�` 2 DaJ;���Aa$��%��'��0 NO

% 2b�\�,-.������5.4 �������(cd�e f�g��� ��.h� f!�.ij��k��"l#Q �m�e.$�ij�nZ%�o&pq, MNrs���tuv��w-� !xZ'�y�TU�.��S.� ��0Q A�� 9��ij�ez{:|�}C�GD~��(z{potassium

antimony tartrate, K2[Sb2(tart)2]���-, thiazolidine

)*��_c0S. 2-thiazolidinecarboxylic acid (2-

THC) �ij�k$+�,��62)� thiazolidine)*�Q�%N��-0S` 2-THCQ.%��/� 9-|��

:<iJ�#�0�.�h0S.� 2-THCQ MN�s�4���0��j �n�.��%1�'-.���j �n2Y, (z{� 2-THC �xZ���<�9'���3n% 2-THC� (�)-� (>)-�0�4�3n����5�01.� xZ���[6-e ��tuv��-, (z{� Sb � 2-THC � S l�����78%�-e9��3��,-.� �'��5�� -,:�xZCF���W:, MS�23�S��, (�),

(>)-2-THC ��0�;����VW.� �� ij�e(z{�<�� D�L�� CoK��<� [Co(A-ala)2

(en)]� %�! ��2Z��xZ���<�9'�ESI-MS0TU�, MNrs���xZ'y�����63)� P�23�)�2Z�. ��CF�0��01.��(� CoK��ij��k�4�s�T<���

5.5 ����� �!" �%�-2Z8�`�=�ce%.� ¡Z�`�5¢5e£>�4c?¤K�%�[�'.64)¥72)� ¦;�e�<�n!0S. ESI-MSQ ��0?�\����?§@%tuv��,� ¡Z%����4*+� ��¨©ªA©�BZ��£C�,-!6��«¬01.48e­D0S.64), 65)� � ¡Z©E�®¯�°±��, Hopfgartner�%+Y�²³���´���¨£>�� � [Co2L3](ClO4)4 �LQ Nl��?!µ¶?·�\�� �°±%S.66)� 0�<�%���� [M>4X]4� �<���\�"#$�m/z% 0.25¸c�',-.���«��P��<�% 4¹0S.���/����ESI-MS

�.FGQ� ��<��º¹»%¼�01.�0 P�� ¡Z©E��f01.��0S.�

Fig. 14. Negative-ion ESI mass spectrum of [W(CO)(NO)2(SO3F)3]> in HSO3F.

Scheme 4

R. Arakawa

�258�

1,1�-��������� (Fe(Cp-COOH)2) �� � �� 2�������������� �������� � !"#$%&'(����)*+, -�./012������345$6(27� 1�89)2& 2�� !"#)":*4��� -;<#1�$=>(?@�A+, B)�� "CD)� 2�E(5FGHB+'($XI��JK�L7MNOAF>+, 5�5� �PD�Q9+'�R#��-;<#ST�34)*U4�67),

5V��W��XYZ[\!\ XClO4 (X]Li, Na, K,

Rb, Cs) �� ^_�`@�abcd�e�P�fghi�� Fig. 15a �jB, 4�E� Nak`E [4MkNa]k

$ldfmdh(5FnoOA� Nak$�pq�`5F>+'($r�+, 4�Est�u� �vXwxd��ESIy�bd��yf�z��{d��)|'+ CID�L}F 4�E��~��(?@�A+, 5�$}F� {d���� 50�� 60 V��RO��(�� 4�E���5� (Fig. 15b), u� ��vXwxdyv��� �� CID

[��Q>F� 4�E��As����E��~����)*+,�PD�Q>F��2 Nak` 4�E���[���

2�7$?@�A+, ���� �PD) Fe(Cp-COOH)2 $-���2�S 4�E�����5� h����d���L4�Nak(���B+,�z��Nak$-;<#�Q9

+�(27� ��2 4�E���B+(>4[�)*+,'�z��[��� B+����yv�xffghi����5�('U� 1�E [M�H]� ( 2�E [2M�H]�

��$noOA�, '�'(�L7� �PD)������� 4�E)�2&"CD(��� 2�E)*+'($r�+, L}F� Nak$�(2}F 4�E$��OA+�z�[��(+'($?@�A+, ������ 1,2-

benzenedicarboxylic acid � 1,3 -benzenedicarboxylic

acid )� [MkH]k, [MkNa]k �L4� 1�E�yv�5�noOA2>, Fe(Cp-COOH)2$ Nak`5� 4�E(5F-;<#B+��� � ��z��������$-�./018��)*+(�@+, '�L4�ESI-MS�� �PD)� �"#¡�¢>£¤¥�)-;<#5�¦� �#E��§¨��B+��2©ª)*+'($r�+,YZ�«¬"#�­5F�� R5�®Xxd¯�E�JK��� °�=�J1� ESI-FT-MS$��2�±�2+, Fig. 16 �� ²³S� Re(II)8��E� ESIxffghi��´��J1�=> µOrbitrap¶ ¯ FT-MS)��5���)*+72), '�� �"#¡�®Xxd¯�E�yv�¡)*+�)� 6W·v��J���4 4¸8¹����¹yv��fghi�(5Fº�A+, »�L4�=�J1xffghi�$º�A+�)� Re(II)YZ��¼

Fig. 15. Positive ESI mass spectra of 1,1�-ferrocenedicarboxylic acid in methanol (0.1 mM) with equimolar alkali metalsalts XClO4 (X]Li, Na, K, Rb, and Cs) (0.02 mM). The cone voltage DV](a) 50 and (b) 60 V. (Reprinted from ref.67 with copyright permission.)

Application of Mass Spectrometry to Coordination Chemistry

�259�

������������ ��������������� ����� [M�8X]8������ ���� !"�#$%&'()*+,��

6. � � � �

-./0�1�23%45� ESI-MS�6�7��8�� 9:(;<=�>�� -./0?��� �@AB�C9DE�� F����GH%&=/01��FI;������E�� 4&J�KL%>�%MN>� pre-

formed����OP���E��Q�� E���?R%&S+� ESI-MS�1�23����T'E����U,��VBW%US+,�� ?%� X��Y� ESIZ��[\���],��� ^_`>`>ab>�cdeBf�FI/01�gh�i�j�UkX�i����lmn�+,����Q�� ESIZ��[\�� ESI��ABop�qCrs>�E�%&= t%uvwWCx=y5�E�������� uvLz�g{l|}����%�~�Q�� *��S+� �����Y���[\�

QS+9� wWguv�Crs>�E�%&=,``���n�U�S����23�g��2j�CGH>�E��lm���� �N� 1�23������%ab*+4=� ����Q�1������n�MS���C]'��*+,�� *��S+� ��������7%MS�1�23����C��*+� `�`��9�+,����C�=�+&:��Q=`����

� � E�`�%��g3����4��%US�F'� �¡¢£�¤�%¥'¦§,�*`>� `�� ¨U��v©� ª�*+'�n,`*�¡¢«�F'��¬%9­��4�®*7¯`>� �*+�¡¢C 2007°;�±�Z��3�3�²%³´*+'�n,`*�µ¶·¸�� �¹º»�¼|%­��¦§,�*`>�

� �

1) C. M. Whitehouse, R. N. Dreyer, M. Yamasita, and J. B.Fenn, Anal. Chem., 57, 675 (1985).

Fig. 16. ESI positive ion mass spectra of a Re(II) octamer complex by high-resolution “orbitrap” FT-MS. The belowspectra are the observed and calculated isotope distribution of the �8 ion.

R. Arakawa

�260�

2) K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, and T.Yoshida, Rapid Commun. Mass Spectrom., 2, 151 (1988).

3) M. Karas and F. Hillenkamp, Anal. Chem., 60, 2299(1988).

4) J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M.Whitehouse, Mass Spectrom. Rev., 9, 37 (1990).

5) R. Colton, A. D’Agostino, and J. C. Traeger, Mass Spec-

trom. Rev., 14, 79 (1995).6) V. Katta, S. K. Chowdhury, and B. T. Chait, J. Am. Chem.

Soc., 112, 5348 (1990).7) R. Arakawa, T. Matsuo, H. Ito, I. Katakuse, K. Nozaki, T.

Ohno, and M. Haga, Org. Mass Spectrom., 29, 289 (1994).8) R. Arakawa, T. Matsuo, K. Nozaki, T. Ohno, and M.

Haga, Inorg. Chem., 34, 2464 (1995).9) M. Haga, K. Hiratsuka, M. Kato, H. Kurosaki, M. Goto, R.

Arakawa, and S. Yano, Chem. Lett., 24, 1143 (1995).10) M. Haga, M. M. Ali, and R. Arakawa, Angew. Chem. Int.

Ed., Engl., 35, 76 (1996).11) R. Arakawa, S. Mimura, G. Matsubayashi, and T.

Matsuo, Bunseki Kagaku, 45, 619 (1996).12) R. Arakawa, G. Matsubayashi, N. Ohashi, S. Furuuchi, T.

Matsuo, M. M. Ali, and M. Haga, J. Mass Spectrom., 31,861 (1996).

13) R. Arakawa, J. Mass Spectrom. Soc. Jpn., 46, 219 (1998).14) M. Haga, H. Hong, Y. Shiozawa, Y. Kawata, H. Monju-

shiro, T. Fukuo, and R. Arakawa, Inorg. Chem., 39, 4566(2000).

15) R. Arakawa, N. Kubota, T. Fukuo, O. Ishitani, and E.Ando, Inorg. Chem., 41, 3749 (2002).

16) T. Maikawa, M. Nakano, R. Arakawa, G. Matsubayashi,and W. Mori, Z. Naturforsch., 50b, 1748 (1995).

17) G. Matsubayashi, T. Maikawa, H. Tamura, M. Nakano,and R. Arakawa, J. Chem. Soc., Dalton Trans., 1539(1996).

18) G. Matsubayashi, K. Natsuaki, M. Nakano, H. Tamura,and R. Arakawa, Inorg. Chim. Acta, 262, 103 (1997).

19) M. Nakano, A. Kuroda, H. Tamura, R. Arakawa, and G.Matsubayashi, Inorg. Chim. Acta, 279, 165 (1998).

20) K. Natsuaki, M. Nakano, G. Matsubayashi, and R. Ara-kawa, Inorg. Chim. Acta, 299, 112 (2000).

21) G. Matsubayashi, M. Nakano, K. Saito, T. Yonemine, andR. Arakawa, J. Organomet. Chem., 611, 364 (2000).

22) G. Matsubayashi, T. Ryowa, H. Tamura, M. Nakano, andR. Arakawa, J. Organomet. Chem., 645, 94 (2002).

23) K. Yamanari, I. Fukuda, T. Kawamoto, Y. Kushi, A.Fuyuhiro, N. Kubota, T. Fukuo, and R. Arakawa, Inorg.

Chem., 37, 5611 (1998).24) K. Yamanari, I. Fukuda, S. Yamamoto, Y. Kushi, A.

Fuyuhiro, N. Kubota, T. Fukuo, and R. Arakawa, J.

Chem. Soc., Dalton Trans., 2131 (2000).25) K. Yamanari, S. Yamamoto, R. Ito, Y. Kushi, A. Fuyu-

hiro, N. Kubota, T. Fukuo, and R. Arakawa, Angew.

Chem. Int. Ed., 40, 2268 (2001).26) K. Yamanari, R. Ito, S. Yamamoto, T. Konno, A. Fuyu-

hiro, K. Fujioka, and R. Arakawa, Inorg. Chem., 41, 6824(2002).

27) K. Yamanari, R. Ito, S. Yamamoto, T. Konno, A. Fuyu-hiro, M. Kobayashi, and R. Arakawa, J. Chem. Soc.,Dalton Trans., 380 (2003).

28) Y. Hasegawa, M. Iwamuro, K. Murakoshi, Y. Wada, R.Arakawa, T. Yamanaka, N. Nakashima, and S. Yana-gida, Bull. Chem. Soc. Jpn., 71, 2573 (1998).

29) M. Alajarin, A. Lopez-Lazaro, A. Pastor, P. D. Prince, J.W. Steed, and R. Arakawa, Chem. Commun., 2, 169(2001).

30) M. AlajarIn, A. Pastor, R. Orenes, J. W. Steed, and R.Arakawa, Chem. Eur. J., 10, 1383 (2004).

31) S. Okeya, M. Hashimoto, F. Nakamura, Y. Kusuyama, M.Kobayashi, and R. Arakawa, Chem. Lett., 29, 1130(2000).

32) G. K. Poon, P. Mistry, and S. Lewis, Biol. Mass Spectrom.,20, 687 (1991).

33) W. Henderson and B. K. Nicholson, J. Chem. Soc., Chem.

Commum., 2531 (1995).34) A. T. Blades, M. G. Ikonomou, and P. Kebarle, Anal.

Chem., 63, 2109 (1991).35) G. J. Van Berkel and F. Zhou, Anal. Chem., 67, 3958

(1995).36) T. J. Cardwell, R. Colton, N. Lambropoulos, J. C. Traeger,

and P. J. Marriott, Anal. Chim. Acta, 280, 239 (1993).37) J. R. Scott, L. S. Baker, W. R. Everett, C. L. Wilkins, and I.

Fritsch, Anal. Chem., 69, 2636 (1997).38) A. H. Brockman, B. S. Dodd, and R. Orlando, Anal.

Chem., 69, 4716 (1997).39) S. Okuno, K. Oka, and R. Arakawa, Anal. Sci., 21, 1449

(2005).40) T. Fukuo, H. Monjushiro, H. Hong, M. Haga, and R.

Arakawa, Rapid Commun. Mass Spectrom., 14, 1301(2000).

41) R. Arakawa, L. Jian, A. Yoshimura, K. Nozaki, T. Ohno,H. Doe, and T. Matsuo, Inorg. Chem., 34, 3874 (1995).

42) R. Arakawa, S. Tachiyashiki, and T. Matsuo, Anal.

Chem., 67, 4133 (1995).43) R. Arakawa, S. Mimura, G. Matsubayashi, and T.

Matsuo, Inorg. Chem., 35, 5725 (1996).44) R. Arakawa, F. Matsuda, G. Matsubayashi, and T.

Matsuo, J. Am. Soc. Mass Spectrom., 8, 713 (1997).45) R. Arakawa, K. Abe, M. Iwai, T. Fukuo, and Y. Naka-

bayashi, J. Mass Spectrom. Soc. Jpn., 49, 183 (2001).46) R. Arakawa, K. Abe, T. Abura, and Y. Nakabayashi,

Bull. Chem. Soc. Jpn., 75, 1983 (2002).47) K. Kimura, R. Mizutani, M. Yokoyama, R. Arakawa, G.

Matsubayashi, M. Okamoto, and H. Doe, J. Am. Chem.

Soc., 119, 2062 (1997).48) K. Kimura, T. Utsumi, T. Teranishi, M. Yokoyama, H.

Sakamoto, M. Okamoto, R. Arakawa, H. Moriguchi, andY. Miyaji, Angew. Chem. Int. Ed. Engl., 36, 2452 (1997).

49) K. Kimura, R. Mizutani, M. Yokoyama, and R. Arakawa,Anal. Chem., 71, 2922 (1999).

50) K. Kimura, H. Sakamoto, S. Kado, R. Arakawa, and M.Yokoyama, Analyst, 125, 1091 (2000).

51) K. Kimura, R. Mizutani, M. Yokoyama, R. Arakawa, andY. Sakurai, J. Am. Chem. Soc., 122, 5448 (2000).

52) R. Arakawa, T. Abura, T. Fukuo, H. Horiguchi, and G.Matsubayashi, Bull. Chem. Soc. Jpn., 72, 1519 (1999).

53) S. Ito, M. Taki, S. Takayama, S. Nagatomo, T. Kitagawa,N. Sakurada, R. Arakawa, and S. Fukuzumi, J. Inorg.

Biochem., 74, 309 (1999).54) S. Ito, M. Taki, S. Takayama, S. Nagatomo, T. Kitagawa,

N. Sakurada, R. Arakawa, and S. Fukuzumi, Angew.

Chem., Int. Ed., 38, 2774 (1999).55) S. Ito, M. Taki, H. Kumei, S. Takayama, S. Nagatomo, T.

Kitagawa, N. Sakurada, R. Arakawa, and S. Fukuzumi,Inorg. Chem., 36, 3708 (2000).

56) M. Okamoto, H. Doe, K. Mizuno, T. Fukuo, and R. Ara-kawa, J. Am. Soc. Mass Spectrom., 9, 966 (1998).

57) M. A. Rahman, H. Doe, M. Okamoto, and R. Arakawa,Electrochim. Acta, 44, 39 (1998).

58) M. S. Bakshi, H. Doe, N. Sakurada, and R. Arakawa,Chem. Lett., 28, 1059 (1999).

59) M. A. Rahman, H. Doe, N. Sakurada, and R. Arakawa,Electrochim. Acta, 47, 623 (2001).

60) R. Arakawa, A. Sasao, and N. Sonoda, J. Mass Spectrom.,40, 66 (2005).

Application of Mass Spectrometry to Coordination Chemistry

�261�

61) Q. Xu, N. Tsumori, L. Jiang, M. Kondo, and R. Arakawa,Chem. Asian J., 2, 599 (2007).

62) R. Arakawa, M. Kobayashi, T. Fukuo, and T. Shiraiwa,Rapid Commun. Mass Spectrom., 15, 685 (2001).

63) R. Arakawa, M. Kobayashi, and T. Ama, J. Am. Soc.

Mass Spectrom., 11, 804 (2000).64) A.-M. Rigault, A.-D. Gervais, A. Van Dorsselaer, and J.-M.

Lehn, Chem. Eur. J., 2, 1395 (1996).65) B. Hasenknopf, J.-M. Lehn, N. Boumediene, A.-D. Ger-

vais, A. Van Dorsselaer, B. Kneisel, and D. Fenske, J. Am.

Chem. Soc., 119, 10956 (1997).66) G. Hopfgartner, C. Piguet, J. D. Henion, and A. F. Wil-

liams, Helv. Chim. Acta, 76, 1759 (1993).67) N. Kubota, T. Fukuo, and R. Arakawa, J. Am. Soc. Mass

Spectrom., 10, 559 (1999).

68) T. Abura, T. Fukuo, S. Shinoda, H. Tsukube, and R.Arakawa, J. Mass Spectrom. Soc. Jpn., 47, 270 (1999).

69) R. Arakawa, A. Sasao, T. Abura, T. Suzuki, and N.Fujitake, Eur. J. Mass Spectrom., 7, 467 (2001).

70) V. V. Borovkov, J. M. Lintuluoto, H. Sugeta, M. Fujiki, R.Arakawa, and Y. Inoue, J. Am. Chem. Soc., 124, 2993(2002).

71) V. V. Borovkov, J. M. Lintuluoto, G. A. Hembury, M.Sugiura, R. Arakawa, and Y. Inoue, J. Org. Chem., 68,7176 (2003).

72) O. Ishitani, private communication.

Keywords: Electrospray ionization mass spectrometry(ESI-MS), Photoreaction intermediate, Self-assembled mono-layer (SAM), Electrolytic oxidation, Chiral recognition

R. Arakawa

�262�