Arch Dams - ITUozgerme/water_resources/05lecture-ArchDams.pdf · arch dams crest a a a a Arch Dam...

Post on 13-Oct-2019

22 views 4 download

transcript

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Arch Dams

Translated from the slides of

Prof. Dr. Recep YURTAL (Ç.Ü.) by his kind courtesy

ercan kahya

Recep YURTAL

Arch Dams •  Curved in plan and carry most of the water thrust

horizontally to the side abutments by arch action.

•  A certain percentage of water load is vertically transmitted to the foundation by cantilever action.

!

Arch Dams

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Recep YURTAL

n  Where & why we design it:

q  Appropriate when “Width / Height of valley” (B/H) < 6 q  Rocks at the base and hillsides should be strong enough

with high bearing capacity. q  To save in the volume of concrete. q  Stresses are allowed to be as high as allowable stress of

concrete. q  Connection to the slope of hillsides should be 45o at least.

Arch Dams

Recep YURTAL

Base width radiousp

Central angle

Arch Width

Downstream Face

Toe

Downstream face

Crest Upstream face

Base width

Height

Base

Axis

Arch Dams

Recep YURTAL

Arch Dam Types

n  Constant Center Arch Dam (variable angle)

q  Good for U-shaped valleys q  Easy construction q  Vertical upstream face q  Appropriate for middle-high

dams

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

n  Variable Center Arch Dams (constant angle)

q  Good for V-shaped valleys q  Limited to the ratio of B/H=5

q  Best center angle: 133o 34´ q  To obtain arch action at the bottom parts

3-4

1-2

1

2

3

4

Arch Dam Types

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

n  Variable Center – Variable Angle Arch Dams

q  Combination of the two above.

q  Its calculation based on

shell theory applied to arch dams

crest

a a

a a

Arch Dam Types

Recep YURTAL

⇐ Upstream

Arch Dam Types

Recep YURTAL

n  3.6.2 DESIGN OF ARCH DAMS Structural Design: à Load distribution in the dam body

& beyond scope of this course

q  Independent ring method q  Trial load method q  Elasticity theory q  Shell theory

Arch Dams

n  Hydraulic Design

²  Determination of thickness at any elevation ²  Effect of uplift force – ignored ²  Stresses due to ice & temp changes-important ²  Arch action - near the crest of dam ²  Cantilever action - near the bottom of dam ²  Horizontal hydrostatic pressure is assumed to be

taken by arch action

Arch Dams

Recep YURTAL

Arch Dams (design principles)

n  Independent Ring method:

h

t

t/2 t/2

t

rm rd

rm = rd – t/2 O

Recep YURTAL

R R

Hh

Ba

r

dFV

x

y

p p

dFV´ φ

θa φ dφ

t

Differential force for infinitely small elemental piece with center angle of dφ :

φdrpdFV ..=

Vertical component:

φφ SindrpdFV ...=ʹ′

▪ Total horizontal force:

h : height of arch lib from the reservoir surface r : radius of arch θa: central angle ▪ Equilibrium of forces in the flow direction (y):

Hh = 2 Ry

Ry: reaction force at the sides in y direction [= R sin (θa/2)]

Arch Dams (design principles)

2...2 a

h SinrhH θγ=

Recep YURTAL

R R

Hh

θa/2

Ba

r

dFV

x

y

p p

dFV´ φ

θa φ dφ

t

Reaction of the sides (R):

θa/2 Rx Ry Ry

Rx

rhR ..γ=

The required thickness of the rib (t) when t << r :

t/R≈σ

t = γ .h.rσ all

σall : allowable working stress for concrete in compression

Arch Dams (design principles)

V =γ.hσ all

r2θa

The volume of concrete for unit height for a single arch:

V = L t L: arch length (L = r θa) (note that θa is in radians)

Recep YURTAL

n  Pressure p = γ × h:

t = p× rdσ all

t/2 t/2

t

rm rd

rm = rd – t/2 O

Reduction factor for base pressure at arch dams is zero (m=0)

Arch Dams (design principles)

The required thickness of the rib (t):

Arch Dams (design principles) ▪ The optimum θa for minimum volume of arch rib:

dV / dθ = 0 à θa = 133o 34’ ► This is the reason why the constant-angle dams require less concrete that the constant-center dams ► Formwork is more difficult ► In practice; 100o < θa < 140o for the constant-angle dams

Recep YURTAL

t/2 t/2

t

rm rd

rm = rd – t/2 O

n  Displacement in an arch ring:

δ =σ allrmE

E = Concrete elasticity modulus rm = Radius from ring axis

For the relation between center angle (2φ), beam length (L) & arch radius (r):

φ×=

Sin2Lr

Arch Dams (design principles)

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Örnek

n  Yüksekliği 120 m olan bir barajın ağırlık ve kemer-ağırlık türünde yapılması halleri için taban genişliklerini ve birim kalınlıktaki hacimlerini karşılaştırınız. Barajda taban su basıncı küçültme faktörü 0.8 dir. γb = 2.4 t/m³

Ağırlık baraj için: Çözüm:

w

b

γγ

=γʹ′

4.20.14.2==γʹ′

m1

hb

−γʹ′=

8.04.21

120 −=

b8.04.2

1120−

×=b

Hacim= ³57002195120 m=××

b= 95 m.

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

n  Kemer-Ağrlık baraj için: m = 0

γʹ′=ʹ′ 1hb m78

4.21120b =×=ʹ′

Hacim = ³m46802178120 =××

Hacim azalması : 18%5700

46805700=

Ağırlık yerine kemer-ağırlık seçmeyle beton hacminde %18 azalma olacaktır. Bu seçim ancak yamaçlar yeterince sağlam olduğunda yapılabilir.

95

120

78

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Örnek

n  Yüksekliği 80 m olacak bir sabit yarıçaplı (silindirik) kemer barajda tabandaki maksimum kemer kalınlığının, en fazla baraj yüksekliğinin ¼ üne eşit olması istendiğine gore kemer yarıçapını hesaplayınız. Kemer halkalarının emniyet gerilmesi 220 t/m², betonun elastisite modülü 2×106 t/m² olduğuna göre tepede anahtar noktasında ortaya çıkacak sehimi bulunuz.

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Çözüm

t = h/4 alalım t = 80 / 4 = 20 m :

ptr h

×=

p = γ × h ( )h4

hr hd ×γ

σ×⎟⎠

⎞⎜⎝

⎛= m551220

41

41r h

d =×=γσ

×=

mtrr dm 4522055

2=−=−=

Erm

hσ=δ m005.010245220 6 =×

×=δ

0.5 cm sehim oluşur.

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Örnek

n  Yüksekliği 100 m ve tepe genişliği 5 m olacak bir kemer barajın tepeden itibaren 0, 25, 50, 75 ve 100 m derinliklerdeki eksen yarıçapları sıra ile 95, 80, 63, 58, 50 m dir. Betonun emniyet gerilmesi 300 t/m² ve elastisite modülü 2×106 t/m² dir. Her seviyede kemer halkasının kalınlık ve sehimini bulunuz.

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Kemer Barajlar (Hesap Esasları)

n  Bağımsız Halkalar Yöntemi

h

t

t/2 t/2

t

rm rd

rm = rd – t/2 O

25

25

25 25

0

25

50

75 100

Recep YURTAL Ç.Ü. İnş.Müh.Böl.

Çözüm

²m/t20030032

32

embh =×=σ=σ

2trr md +=

h

drptσ×

= ( ) ( ) ( )h

m

p

h

dr

m

p

t5.0rh2trh

×+××γ=

σ

⎟⎠

⎞⎜⎝

⎛ +××γ=

h

m t5.0hrhtσ

×××γ+××γ= ( )5.0h

rhth

m

××γ−σ××γ

=

γ = 1 t/m³ , σh = 200 t/m² için: ( )5.0h200rht m

×−×

= bulunur.

Sehim: Erm

hσ=δ

Recep YURTAL

Sıra No

Baraj tepesinden itibaren derinlik

h (m)

Eksen yarıçapı rm (m)

Kemer kalınlığı t (m)

Sehim δ (cm)

1 0 95 0,00 0,95

2 25 80 10,67 0,80

3 50 63 18,00 0,63

4 75 58 26,77 0,58

5 100 50 33,33 0,50

Erm

hσ=δ( )5.0h200rht m

×−×

=