Area/SigmaNotaon* - bcsoh.org 6.4.pdf · The*AreaProblem* •...

Post on 29-Aug-2019

0 views 0 download

transcript

Area/Sigma  Nota.on  

Objec.ve:    To  define  area  for  plane  regions  with  curvilinear  boundaries.    To  use  Sigma  Nota.on  to  find  areas.  

The  Area  Problem  

•  Formulas  for  the  areas  of  polygons  are  well  known.    However,  the  problem  of  finding  formulas  for  regions  with  curved  boundaries  caused  difficul>es  for  early  mathema>cians.  

The  Area  Problem  

•  Formulas  for  the  areas  of  polygons  are  well  known.    However,  the  problem  of  finding  formulas  for  regions  with  curved  boundaries  caused  difficul>es  for  early  mathema>cians.  

•  The  first  real  progress  was  made  by  Archimedes  who  obtained  areas  of  regions  with  curved  bounds  by  the  method  of  exhaus>on.      

The  Area  Problem  

•  This  method,  when  applied  to  a  circle,  consists  of  inscribing  a  succession  of  regular  polygons  in  the  circle  and  allowing  the  number  of  sides  to  increase  indefinitely.    As  the  number  of  sides  increases,  the  polygons  tend  to  “exhaust”  the  region  inside  the  circle,  and  the  area  of  the  polygons  become  beBer  and  beBer  approxima>ons  of  the  exact  area.  

The  Rectangle  Method  

•  We  will  now  use  Archimedes’  method  of  exhaus>on  with  rectangles  to  find  the  area  under  a  curve  in  the  following  way:  

The  Rectangle  Method  

•  We  will  now  use  Archimedes’  method  of  exhaus>on  with  rectangles  in  the  following  way:  

•  Divide  the  interval  [a,  b]  into  n  equal  subintervals,  and  over  each  subinterval  construct  a  rectangle  that  extends  from  the  x-­‐axis  to  any  point  on  the  curve  that  is  above  the  subinterval.  

The  Rectangle  Method  

•  For  each  n,  the  total  area  of  the  rectangles  can  be  viewed  as  an  approxima>on  to  the  exact  area  under  the  curve  over  the  interval  [a,  b].    As  n  increases  these  approxima>ons  will  get  beBer  and  beBer  and  will  approach  the  exact  area  as  a  limit.  

Area  as  a  Limit;  Sigma  Nota.on  

•  The  nota>on  we  will  use  is  called  sigma  nota>on  or  summa>on  nota>on  because  it  uses  the  uppercase  Greek  leBer            (sigma)  to  denote  various  kinds  of  sums.    To  illustrate  how  this  nota>on  works,  consider  the  sum                                                                      in  which  each  term  is  of  the  form  k2,  where  k  is  one  of  the  integers  from  1-­‐5.    In  Sigma  nota>on  this  can  be  wriBen  as  

       which  is  read  “the  summa>on  of  k2  from  1  to  5”.  

22222 54321 ++++

∑=

5

1

2

kk

Sigma  Nota.on  

•  In  general,  we  can  look  at  sigma  nota>on  like  this:  

Example  1  

•  Let’s  look  at  some  examples  of  sigma  nota>on.  

=∑=

8

4

3

kk

=∑=

5

1

2k

k

=+∑=

5

0

)12(k

k

=+−∑=

5

0

)12()1(k

k k

Other  Sums  

•  Here  are  two  other  ideas  we  need  to  know  1.  If  the  upper  and  lower  limits  of  summa>on  are  the  

same,  we  evaluate  that  number  once  in  the  func>on.  

2.  If  the  func>on  we  are  evalua>ng  is  a  constant,  we  add  that  number  to  itself  n  >mes,  or  Cn.  

∑=

=2

2

33 2kk

∑=

==++++=5

1

10)5(2222222i

∑=

=n

kCnC

1

Changing  the  limits  of  Summa.on  

•  A  sum  can  be  wriBen  in    more  than  one  way  using  Sigma  Nota>on  with  different  limits  of  summa>on.    For  example,  these  three  are  all  the  same.  

10864225

1

++++=∑=ii

∑=

+4

022

jj

∑=

−7

3

42k

k

Example  2  

•  Express  the  following  in  sigma  nota>on  so  that  the  lower  limit  of  summa>on  is  0  rather  than  3.  

=∑=

−7

3

25k

k

Example  2  

•  Express  the  following  in  sigma  nota>on  so  that  the  lower  limit  of  summa>on  is  0  rather  than  3.  

•  We  need  to  subtract  3  from  the  upper  and  lower  limits  of  summa>on.    If  you  subtract  3  from  the  limits,  you  must  add  3  to  k  in  the  func>on.    Always  do  the  opposite.  

∑=

−7

3

25k

k

Changing  Limits  

•  Be  careful…  you  add/subtract  from  k,  not  the  exponent.    For  example,  change  the  lower  limit  of  summa>on  from  3  to  1.  

∑∑∑=

+−

−=

−+

=

− ==5

1

3227

23

1)2(27

3

12 333k

k

k

k

k

k

Proper.es  of  Sums  

•  Theorem  6.4.1  

a)    b)    c)        

∑∑==

=n

kk

n

kk acca

11

∑∑∑===

+=+n

kk

n

kkk

n

kk baba

111

)(

∑∑∑===

−=−n

kk

n

kkk

n

kk baba

111

)(

Summa.on  Formulas  

•  Theorem  6.4.2    a)    b)    c)        

2)1(...21

1

+=+++=∑

=

nnnkn

k

6)12)(1(...21 222

1

2 ++=+++=∑

=

nnnnkn

k

2

1

3333

2)1(...21∑

=⎥⎦

⎤⎢⎣

⎡ +=+++=

n

k

nnnk

Example  3  

•  Evaluate   ∑=

+30

1

)1(k

kk

Example  3  

•  Evaluate   ∑=

+30

1

)1(k

kk

∑ ∑ ∑∑= = ==

+=+=+30

1

30

1

30

1

2230

1

)1(k k kk

kkkkkk

Example  3  

•  Evaluate   ∑=

+30

1

)1(k

kk

∑ ∑ ∑∑= = ==

+=+=+30

1

30

1

30

1

2230

1

)1(k k kk

kkkkkk

99202)31(30

6)61)(31(30

=+

Defini.on  of  Area  

•  We  will  now  turn  to  the  problem  of  giving  a  precise  defini>on  of  what  is  meant  by  “area  under  a  curve.”    Specifically,  suppose  that  the  func>on    f  is  con>nuous  and  nonnega>ve  on  the  interval  [a,b],  and  let  R  denote  the  region  bounded  below  by  the  x-­‐axis,  bounded  on  the  sides  by  the  ver>cal  lines  x  =  a  and            x  =  b,  and  bounded  above  by  the  curve  y  =  f(x).  

Defini.on  of  Area  

•  Divide  the  interval  [a,  b]  into  n  equal  subintervals  by  inser/ng  n  –  1  equally  spaced  points  between  a  and  b  and  denote  those  points  by     121 ,..., −nxxx

Defini.on  of  Area  

•  Each  of  these  subintervals  has  width  (b  –  a)/n,  which  is  customarily  denoted  by  

nabx −

Defini.on  of  Area  

•  Over  each  interval  construct  a  rectangle  whose  height  is  the  value  of  f  at  an  arbitrarily  selected  point  in  the  subinterval.    Thus,  if                                          denote  the  points  selected  in  the  subintervals,  then  the  rectangles  will  have  heights                                                                        and  areas      

**2

*1 ,..., nxxx

)(),...(),( **2

*1 nxfxfxf

xxfxxfxxf n ΔΔΔ )(,...)(,)( **2

*1

Defini.on  of  Area  

•  This  can    be  expressed  more  compactly  in  sigma  nota>on  as:                                                                          (k  =  #  of  rectangle)  

•  We  will  repeat  the  process  using  more  and  more  subdivisions,  and  define  the  area  of  R  to  be  the  “limit”  of  the  areas  of  the  approxima>ng  regions  Rn  as  n  increases  without  bound.    That  is,  we  define  the  area  A  as  

xxfAn

kk Δ≈∑

=

)(1

*

xxfAn

kknΔ≈ ∑

=+∞→

)(lim1

*

Defini.on  of  Area  

•  Defini>on  6.4.3  (Area  under  a  curve)  •  If  the  func>on  f  is  con>nuous  on  [a,  b]  and  if  f(x)  >  0  for  all  x  in  [a,  b],  then  the  area  under  the  curve  y  =  f(x)  over  the  interval  [a,  b]  is  defined  by  

xxfAn

kknΔ= ∑

=+∞→

)(lim1

*

Points  

•  The  values  of                                        can  be  chosen  arbitrarily,  so  it  is  conceivable  that  different  choices  of  these  values  might  produce  different  values  of  A.    Were  this  to  happen,  then  the  defini>on  of  area  would  not  be  acceptable.    This  does  not  happen.    We  will  get  the  same  area  regardless  of  which  points  we  choose.  

**2

*1 ,..., nxxx

Points  

•  The  three  ways  we  will  look  at  this  is:    1.  The  lec  endpoint  of  each  subinterval  2.  The  right  endpoint  of  each  subinterval  3.  The  midpoint  of  each  subinterval  

Points  

•  To  be  more  specific,  suppose  that  the  interval  [a,  b]  is  divided  into  n  equal  parts  of  length                                                  by  the  points                                        and  let  x0  =  a  and  xn  =  b.    Then  

                                                         for  k  =  0,  1,  2,…,n      

nabx /)( −=Δ*1

*2

*1 ,..., −nxxxxkaxk Δ+=

Points  

•  We  will  look  at  each  point  as:  

•  Lec  endpoint    •  Right  endpoint    •  Midpoint    

xkaxx kk Δ−+== − )1(1*

xkaxx kk Δ+== −1*

xkaxx kk Δ−+== − )2/1(1*

Example  5  

•  Use  the  defini>on  of  area  using  the  right  endpoint  of  each  subinterval  to  find  the  area  between  the  graph  of  f(x)  =  x2  and  the  interval  [0,  1].  

Example  5  

•  Use  the  defini>on  of  area  using  the  right  endpoint  of  each  subinterval  to  find  the  area  between  the  graph  of  f(x)  =  x2  and  the  interval  [0,  1].  

•  We  will  use  the  same  problem  solving  process  for  each  point  we  choose.  

1.  Find     xΔ

Example  5  

•  Use  the  defini>on  of  area  using  the  right  endpoint  of  each  subinterval  to  find  the  area  between  the  graph  of  f(x)  =  x2  and  the  interval  [0,  1].  

•  We  will  use  the  same  problem  solving  process  for  each  point  we  choose.  

1.  Find       xΔ nnx 101

=−

Example  5  

•  Use  the  defini>on  of  area  using  the  right  endpoint  of  each  subinterval  to  find  the  area  between  the  graph  of  f(x)  =  x2  and  the  interval  [0,  1].  

•  We  will  use  the  same  problem  solving  process  for  each  point  we  choose.  

1.  Find    2.  Find    

xΔ nnx 101

=−

*kx

Example  5  

•  Use  the  defini>on  of  area  using  the  right  endpoint  of  each  subinterval  to  find  the  area  between  the  graph  of  f(x)  =  x2  and  the  interval  [0,  1].  

•  We  will  use  the  same  problem  solving  process  for  each  point  we  choose.  

1.  Find    2.  Find    

xΔ nnx 101

=−

*kx

nk

nkxk =+=10*

Example  5  

•  Use  the  defini>on  of  area  using  the  right  endpoint  of  each  subinterval  to  find  the  area  between  the  graph  of  f(x)  =  x2  and  the  interval  [0,  1].  

•  We  will  use  the  same  problem  solving  process  for  each  point  we  choose.  

1.  Find    2.  Find    

xΔ nnx 101

=−

*kx

nk

nkxk =+=10*

∑∑==

+∞→=⎟

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛=Δn

k

n

kkn n

knn

kxxf1

3

22

1

* 1)(lim

Example  5  

•  Use  the  defini>on  of  area  using  the  right  endpoint  of  each  subinterval  to  find  the  area  between  the  graph  of  f(x)  =  x2  and  the  interval  [0,  1].  

•  We  will  use  the  same  problem  solving  process  for  each  point  we  choose.  

1.  Find    2.  Find    

xΔ nnx 101

=−

*kx

nk

nkxk =+=10*

⎥⎦

⎤⎢⎣

⎡ ++==⎟

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛=Δ ∑∑==

+∞→ 6)12)(1(11)(lim 3

13

22

1

* nnnnn

knn

kxxfn

k

n

kkn

Example  5  

•  Use  the  defini>on  of  area  using  the  right  endpoint  of  each  subinterval  to  find  the  area  between  the  graph  of  f(x)  =  x2  and  the  interval  [0,  1].  

•  We  will  use  the  same  problem  solving  process  for  each  point  we  choose.  

1.  Find    2.  Find    

xΔ nnx 101

=−

*kx

nk

nkxk =+=10*

31

62

6)12)(1(1lim 3

3

3 ==⎥⎦

⎤⎢⎣

⎡ +++∞→ n

nnnnnn

Theorem  6.4.4  

•  Here  are  a  few  limits  that  you  may  or  may  not  use.    They  can  make  the  end  of  the  problems  easier.  

∑=

+∞→=

n

kn na

1

111lim) ∑=

+∞→=

n

knk

nb

12 2

11lim)

∑=

+∞→=

n

knk

nc

1

23 3

11lim) ∑=

+∞→=

n

knk

nd

1

34 4

11lim)

Example  6  

•  Use  the  defini>on  of  area  using  the  midpoint  to  find  the  area  under  the  curve  f(x)  =  9  –  x2  over  the  interval  [0,  3].  

Example  6  

•  Use  the  defini>on  of  area  using  the  midpoint  to  find  the  area  under  the  curve  f(x)  =  9  –  x2  over  the  interval  [0,  3].  

1. Find     xΔ nnx 303

=−

Example  6  

•  Use  the  defini>on  of  area  using  the  midpoint  to  find  the  area  under  the  curve  f(x)  =  9  –  x2  over  the  interval  [0,  3].  

1. Find  2. Find    

xΔ nnx 303

=−

*kx

nnk

nkxk 2

333)2/1(0* −=−+=

Example  6  

•  Use  the  defini>on  of  area  using  the  midpoint  to  find  the  area  under  the  curve  f(x)  =  9  –  x2  over  the  interval  [0,  3].  

1. Find  2. Find    

xΔ nnx 303

=−

*kx

nnk

nkxk 2

333)2/1(0* −=−+=

nnnkxxf

n

kkn

32339)(lim

2

1

*

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛ −−=Δ∑=

+∞→

Example  6  

•  Use  the  defini>on  of  area  using  the  midpoint  to  find  the  area  under  the  curve  f(x)  =  9  –  x2  over  the  interval  [0,  3].  

1. Find  2. Find    

xΔ nnx 303

=−

*kx

nnk

nkxk 2

333)2/1(0* −=−+=

nnnk

nk

nnnkxxf

n

kkn

349

218993

2339)(lim 222

22

1

*⎟⎟⎠

⎞⎜⎜⎝

⎛−+−=⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛ −−=Δ∑=

+∞→

Example  6  

•  Use  the  defini>on  of  area  using  the  midpoint  to  find  the  area  under  the  curve  f(x)  =  9  –  x2  over  the  interval  [0,  3].  

1. Find  2. Find    

xΔ nnx 303

=−

*kx

nnk

nkxk 2

333)2/1(0* −=−+=

333

2

222

2

427

25427273

49

21899lim

nnk

nk

nnnnk

nk

n−+−=⎟⎟

⎞⎜⎜⎝

⎛−+−

+∞→

180032727 =−+−=

Example  6  

•  Let’s  quickly  look  at  this  as  a  right  endpoint  and  compare  the  two  answers.  

nnnkxxf

n

kkn

32339)(lim

2

1

*

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛ −−=Δ∑=

+∞→

nnkxxf

n

kkn

339)(lim2

1

*

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−=Δ∑=

+∞→

Example  6  

•  Let’s  quickly  look  at  this  as  a  right  endpoint  and  compare  the  two  answers.  

3

22 2727339limnk

nnnk

n−=⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−+∞→

333

2

222

2

427

25427273

49

21899lim

nnk

nk

nnnnk

nk

n−+−=⎟⎟

⎞⎜⎜⎝

⎛−+−

+∞→

Net  Signed  Area  

•  In  our  defini>on  of  area,  we  assumed  that  f  was  con>nuous  and  nonnega>ve  over  the  interval  [a,  b].  

•  If  f  is  both  nega>ve  and  posi>ve  over  the  interval,  our  defini>on  no  longer  represents  the  area  between  the  curve  y  =  f(x)  and  the  interval  [a,  b];  rather,  it  represents  a  difference  of  areas-­‐  the  area  above  the  x-­‐axis  minus  the  area  below  the  x-­‐axis.    We  call  this  the  net  signed  area.  

Defini.on  6.4.5  

•  Net  Signed  Area-­‐    If  the  func>on  f  is  con>nuous  on  [a,  b]  then  the  net  signed  area  A  between  y  =  f(x)  and  the  interval  [a,  b]  is  defined  by  

xxfAn

kknΔ= ∑

=+∞→

)(lim1

*

Example  7  

•  Use  our  defini>on  of  area  with  the  lec  endpoint  to  find  the  net  signed  area  between  the  graph  of  

       y  =  x  –  1  and  the  interval  [0,  2]  

Example  7  

•  Use  our  defini>on  of  area  with  the  lec  endpoint  to  find  the  net  signed  area  between  the  graph  of  

       y  =  x  –  1  and  the  interval  [0,  2]  1. Find    2.    Find      

nnx 202

=−

=ΔxΔ

*kx nn

kn

kxk222)1(0* −=−+=

nnnk

nnnkxxf

n

kkn

2442122)(lim 221

* −−=⎥⎦

⎤⎢⎣

⎡−⎟⎠

⎞⎜⎝

⎛ −=Δ∑=

+∞→

022 =−

Example  7  •  Again,  let’s  compare  this  to  the  right  endpoint.  •  Using  the  right  endpoint,         n

kxk20* +=

nnnk

nnnkxxf

n

kkn

2442122)(lim 221

* −−=⎥⎦

⎤⎢⎣

⎡−⎟⎠

⎞⎜⎝

⎛ −=Δ∑=

+∞→

022 =−

nnk

nnkxxf

n

kkn

24212)(lim 21

* −=⎥⎦

⎤⎢⎣

⎡−⎟⎠

⎞⎜⎝

⎛=Δ∑=

+∞→

Homework  

•  Page  384  •  3-­‐15  odd  •  27,  39-­‐51  odd