Bachelor's PP Presentation

Post on 18-Aug-2015

12 views 2 download

Tags:

transcript

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Lattice Approximations for Black-Scholes typemodels in Option Pricing

Hossein NohrouzianAnne Karlen

March 16, 2014

Bachelor thesis in mathematics

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Agenda

1 About Our Thesis

2 Introduction

3 LatticeBinomial TreeTrinomial Tree

4 Convergence of Binomial Models to GBMPart iPart iiPart iii

5 Lattice Approaches in Discrete TimeBinomial ModelsTrinomial Models

6 Case of Equivalence

7 Conclusion

2/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

About Our Thesis

• Why did we choose our topic?

• Knowledge and understanding

• Ability to search, collect, evaluate and interpret

• Identify, formulate and solve problems

• Communication of our project to different groups

3/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

About Our Thesis

• Why did we choose our topic?

• Knowledge and understanding

• Ability to search, collect, evaluate and interpret

• Identify, formulate and solve problems

• Communication of our project to different groups

3/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

About Our Thesis

• Why did we choose our topic?

• Knowledge and understanding

• Ability to search, collect, evaluate and interpret

• Identify, formulate and solve problems

• Communication of our project to different groups

3/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

About Our Thesis

• Why did we choose our topic?

• Knowledge and understanding

• Ability to search, collect, evaluate and interpret

• Identify, formulate and solve problems

• Communication of our project to different groups

3/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

About Our Thesis

• Why did we choose our topic?

• Knowledge and understanding

• Ability to search, collect, evaluate and interpret

• Identify, formulate and solve problems

• Communication of our project to different groups

3/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Introduction

• Derivatives, Securities and Options

• Option Pricing Via Discrete and Continuous Time

• Lattice Approach in Discrete Time

• Geometric Brownian Motion in Continuous Time

4/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Introduction

• Derivatives, Securities and Options

• Option Pricing Via Discrete and Continuous Time

• Lattice Approach in Discrete Time

• Geometric Brownian Motion in Continuous Time

4/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Introduction

• Derivatives, Securities and Options

• Option Pricing Via Discrete and Continuous Time

• Lattice Approach in Discrete Time

• Geometric Brownian Motion in Continuous Time

4/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Introduction

• Derivatives, Securities and Options

• Option Pricing Via Discrete and Continuous Time

• Lattice Approach in Discrete Time

• Geometric Brownian Motion in Continuous Time

4/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Binomial Tree

S0

S0u

S0d

S0u2

S0ud

S0d2

S0u3

S0u2d

S0ud2

S0d3

p

1− p

∆T

∆t ∆t ∆tt0 t1 t2 T

Figure : Three-Step Binomial Tree

5/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Trinomial Tree

S0

S0u

S0pm

S0d

S0u2

S0u

S0

S0d

S0d2

S0u3

S0u2

S0u

S0

S0d

S0d2

S0d3

pu

pd

Figure : Three-Step Trinomial Tree

6/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Convergence of Binomial Modelsto Geometric Brownian Motion

• The sequence of Binomial Models and its Convergence toGeometric Brownian Motion (Part i)

• The sequence of Binomial Models and its Convergence toBlack-Scholes Formulae Under Risk-Neutral Probability(Part ii)

• Mean and Variance of a Random Variable Which isLog-normally Distributed (Part iii)

7/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Convergence of Binomial Modelsto Geometric Brownian Motion

• The sequence of Binomial Models and its Convergence toGeometric Brownian Motion (Part i)

• The sequence of Binomial Models and its Convergence toBlack-Scholes Formulae Under Risk-Neutral Probability(Part ii)

• Mean and Variance of a Random Variable Which isLog-normally Distributed (Part iii)

7/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Convergence of Binomial Modelsto Geometric Brownian Motion

• The sequence of Binomial Models and its Convergence toGeometric Brownian Motion (Part i)

• The sequence of Binomial Models and its Convergence toBlack-Scholes Formulae Under Risk-Neutral Probability(Part ii)

• Mean and Variance of a Random Variable Which isLog-normally Distributed (Part iii)

7/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Central Limit Theorem

Let Y1, Y2,. . . , Yn be independent and identically distributedrandom variables with E [Yi ] = µ and V [Yi ] = σ2 <∞. Define

Un =

∑ni=1 Yi − nµ

σ√n

=Y − µσ/√n

whereY =1

n

n∑i=1

Yi

Then the distribution function of Un converges to the standardnormal distribution function as n→∞. That is

limn→∞

P(Un ≤ u) =

∫ u

−∞

1√2π

e−t2/2dt for allu

8/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

The sequence of Binomial Modelsand its Convergence to Geometric

Brownian Motion•

E [Y ] = E

[t∑

k=1

Yn,k

]= E

[ln

Sn,tSn,0

]= E [Yn,1 + Yn,2 + ...+ Yn,t ] , 1 ≤ t ≤ n

E [Yn,t ] = p ln un + (1− p) ln dn

Y = µt + σW (t) 0 ≤ t ≤ T

E [Y ] = µT V [Y ] = σ2T

• Denoting xn = ln un and yn = ln dn.

E [Y ] = n [pxn + (1− p)yn] = µT

V [Y ] = np(1− p)(xn − yn)2 = σ2T

9/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

The sequence of Binomial Modelsand its Convergence to Geometric

Brownian Motion•

E [Y ] = E

[t∑

k=1

Yn,k

]= E

[ln

Sn,tSn,0

]= E [Yn,1 + Yn,2 + ...+ Yn,t ] , 1 ≤ t ≤ n

E [Yn,t ] = p ln un + (1− p) ln dn

Y = µt + σW (t) 0 ≤ t ≤ T

E [Y ] = µT V [Y ] = σ2T

• Denoting xn = ln un and yn = ln dn.

E [Y ] = n [pxn + (1− p)yn] = µT

V [Y ] = np(1− p)(xn − yn)2 = σ2T

9/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

The sequence of Binomial Modelsand its Convergence to Geometric

Brownian Motion•

E [Y ] = E

[t∑

k=1

Yn,k

]= E

[ln

Sn,tSn,0

]= E [Yn,1 + Yn,2 + ...+ Yn,t ] , 1 ≤ t ≤ n

E [Yn,t ] = p ln un + (1− p) ln dn

Y = µt + σW (t) 0 ≤ t ≤ T

E [Y ] = µT V [Y ] = σ2T

• Denoting xn = ln un and yn = ln dn.

E [Y ] = n [pxn + (1− p)yn] = µT

V [Y ] = np(1− p)(xn − yn)2 = σ2T9/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

The sequence of Binomial Modelsand its Convergence to Geometric

Brownian Motion

• xn = µT

n + σ√

1−pp

√Tn

yn = µTn − σ

√p

1−p

√Tn

limn→∞

P{Yn,1 + Yn,2 + ...+ Yn,n − nE [Yn,1]√

nV [Yn,1]≤ x

}=p{ ln(ST/S0)− µT

σ√T

≤ x}

= Φ(x)

• This proves that binomial models at time T , follow thenormal distribution with mean µT and σ2T .

10/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

The sequence of Binomial Modelsand its Convergence to Geometric

Brownian Motion

• xn = µT

n + σ√

1−pp

√Tn

yn = µTn − σ

√p

1−p

√Tn

limn→∞

P{Yn,1 + Yn,2 + ...+ Yn,n − nE [Yn,1]√

nV [Yn,1]≤ x

}=p{ ln(ST/S0)− µT

σ√T

≤ x}

= Φ(x)

• This proves that binomial models at time T , follow thenormal distribution with mean µT and σ2T .

10/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

The sequence of Binomial Modelsand its Convergence to Geometric

Brownian Motion

• xn = µT

n + σ√

1−pp

√Tn

yn = µTn − σ

√p

1−p

√Tn

limn→∞

P{Yn,1 + Yn,2 + ...+ Yn,n − nE [Yn,1]√

nV [Yn,1]≤ x

}=p{ ln(ST/S0)− µT

σ√T

≤ x}

= Φ(x)

• This proves that binomial models at time T , follow thenormal distribution with mean µT and σ2T .

10/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

The sequence of Binomial Modelsand its Convergence to

Black-Scholes Model UnderRisk-Neutral Probability

limn→∞

E ∗[Y ] = limn→∞

n[p∗xn + (1− p∗)yn] =

(r − σ2

2

)T

limn→∞

V ∗[Y ] = limn→∞

np ∗ (1− p∗)(xn − yn)2 = σ2T

11/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

The sequence of Binomial Modelsand its Convergence to

Black-Scholes Model UnderRisk-Neutral Probability

limn→∞

E ∗[Y ] = limn→∞

n[p∗xn + (1− p∗)yn] =

(r − σ2

2

)T

limn→∞

V ∗[Y ] = limn→∞

np ∗ (1− p∗)(xn − yn)2 = σ2T

11/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

The sequence of Binomial Modelsand its Convergence to

Black-Scholes Model UnderRisk-Neutral Probability

limn→∞

P∗{Y − nµn]

σn√n≤ x

}=p∗

{ ln(ST/S0)− (r − σ2

2 )T

σ√T

≤ x}

= Φ(x)

• which means, under risk-neutral probability measure, ourstochastic process (binomial models) at time T converges

to normal distribution with mean (r − σ2

2 )T and varianceσ2T .

12/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

The sequence of Binomial Modelsand its Convergence to

Black-Scholes Model UnderRisk-Neutral Probability

limn→∞

P∗{Y − nµn]

σn√n≤ x

}=p∗

{ ln(ST/S0)− (r − σ2

2 )T

σ√T

≤ x}

= Φ(x)

• which means, under risk-neutral probability measure, ourstochastic process (binomial models) at time T converges

to normal distribution with mean (r − σ2

2 )T and varianceσ2T .

12/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Mean and Variance of a RandomVariable Which is Log-normally

Distributed

• Random variable Y is normally distributed

E [Y ] = (r − σ2

2)T V [Y ] = σ2T

• Random variable X = eY or Y = lnX is log-normallydistributed

E [X ] = E [eY ] = e(µ+ 12σ2)T

V [X ] = e(2µ+σ2)T(eσ

2T − 1)

13/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Mean and Variance of a RandomVariable Which is Log-normally

Distributed

• Random variable Y is normally distributed

E [Y ] = (r − σ2

2)T V [Y ] = σ2T

• Random variable X = eY or Y = lnX is log-normallydistributed

E [X ] = E [eY ] = e(µ+ 12σ2)T

V [X ] = e(2µ+σ2)T(eσ

2T − 1)

13/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Different Binomial Models

• Cox-Ross-Rubinstein Model

• Jarrow-Rudd Model

• Tian Model

• Trigeorgis Model

• Leisen-Reimer Model

14/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Different Binomial Models

• Cox-Ross-Rubinstein Model

• Jarrow-Rudd Model

• Tian Model

• Trigeorgis Model

• Leisen-Reimer Model

14/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Different Binomial Models

• Cox-Ross-Rubinstein Model

• Jarrow-Rudd Model

• Tian Model

• Trigeorgis Model

• Leisen-Reimer Model

14/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Different Binomial Models

• Cox-Ross-Rubinstein Model

• Jarrow-Rudd Model

• Tian Model

• Trigeorgis Model

• Leisen-Reimer Model

14/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Different Binomial Models

• Cox-Ross-Rubinstein Model

• Jarrow-Rudd Model

• Tian Model

• Trigeorgis Model

• Leisen-Reimer Model

14/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Different Binomial Models

p

CRRud

eσ√

∆t

e−σ√

∆ter∆t−du−d

JRud

e(r−σ2

2)∆t+σ

√∆t

e(r−σ2

2)∆t−σ

√∆t

eσ2

2 ∆t−e−σ√

∆t

eσ√

∆t−e−σ√

∆t

Tiud

MV2 [V + 1 +

√V 2 + 2V + 3]

MV2 [V + 1−

√V 2 + 2V + 3]

M−du−d

Tri ∆X

√σ2∆t +

(r − σ2

2

)2(∆t)2 1

2

[1 +

(r − σ2

2

)∆t∆X

]LR

ud

un = rnp′npn

dn = rn−pnun1−pn

p′n = h−1(d1)pn = h−1(d2)

Where in Tian’s Model, M = er∆t and V = eσ2∆t .

15/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Different Trinomial Models

• Boyle’s Approach

• The Replicating Portfolio

• Log-normal Transformation (Kamrad-Ritchken Model)

• The Explicit Finite Difference Approach(Brennan-Schwartz Approach)

16/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Different Trinomial Models

• Boyle’s Approach

• The Replicating Portfolio

• Log-normal Transformation (Kamrad-Ritchken Model)

• The Explicit Finite Difference Approach(Brennan-Schwartz Approach)

16/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Different Trinomial Models

• Boyle’s Approach

• The Replicating Portfolio

• Log-normal Transformation (Kamrad-Ritchken Model)

• The Explicit Finite Difference Approach(Brennan-Schwartz Approach)

16/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Different Trinomial Models

• Boyle’s Approach

• The Replicating Portfolio

• Log-normal Transformation (Kamrad-Ritchken Model)

• The Explicit Finite Difference Approach(Brennan-Schwartz Approach)

16/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Different Trinomial Models

pi

B u λeσ√

∆t pupd

(V + M2 −M)u − (M − 1)

(u − 1)(u2 − 1)(V + M2 −M)u2 − u3(M − 1)

(u − 1)(u2 − 1)

KR v λσ√

∆tpupd

1

2λ2+µ√

∆t

2λσ1

2λ2− µ√

∆t

2λσ

BSpupd

−1

2rj∆t +

1

2σ2j2∆t

1

2rj∆t +

1

2σ2j2∆t

Where in Boyle’s Model M = er∆t and V = M2(eσ

2∆t − 1)

.

Further, pm = 1− pu − pd .

17/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

The Case of Equivalence BetweenBinomial and Trinomial Models

Static binomial and trinomial trees with equal ∆t and Tcoincide, if we choose:

• u = e√σ2h−µ2h

• p = 12

[1

2(σ2h−µ2h2)+ 1√

σ2h−µ2h2

µ√

2hσ

] 12

(Other models exist, e.g. Derman)

18/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Conclusion

• Knowledge and understanding

• Ability to search, collect, evaluate and interpret

• Identify, formulate and solve problems

• Communication of our project to different groups

• Ability to put our work into a societal context and itsvalue within it

• Plans to continue and develop this research

• Questions?

• Thanks!

19/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Conclusion

• Knowledge and understanding

• Ability to search, collect, evaluate and interpret

• Identify, formulate and solve problems

• Communication of our project to different groups

• Ability to put our work into a societal context and itsvalue within it

• Plans to continue and develop this research

• Questions?

• Thanks!

19/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Conclusion

• Knowledge and understanding

• Ability to search, collect, evaluate and interpret

• Identify, formulate and solve problems

• Communication of our project to different groups

• Ability to put our work into a societal context and itsvalue within it

• Plans to continue and develop this research

• Questions?

• Thanks!

19/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Conclusion

• Knowledge and understanding

• Ability to search, collect, evaluate and interpret

• Identify, formulate and solve problems

• Communication of our project to different groups

• Ability to put our work into a societal context and itsvalue within it

• Plans to continue and develop this research

• Questions?

• Thanks!

19/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Conclusion

• Knowledge and understanding

• Ability to search, collect, evaluate and interpret

• Identify, formulate and solve problems

• Communication of our project to different groups

• Ability to put our work into a societal context and itsvalue within it

• Plans to continue and develop this research

• Questions?

• Thanks!

19/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Conclusion

• Knowledge and understanding

• Ability to search, collect, evaluate and interpret

• Identify, formulate and solve problems

• Communication of our project to different groups

• Ability to put our work into a societal context and itsvalue within it

• Plans to continue and develop this research

• Questions?

• Thanks!

19/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Conclusion

• Knowledge and understanding

• Ability to search, collect, evaluate and interpret

• Identify, formulate and solve problems

• Communication of our project to different groups

• Ability to put our work into a societal context and itsvalue within it

• Plans to continue and develop this research

• Questions?

• Thanks!

19/19

Lattice Ap-proximations

forBlack-Scholestype models inOption Pricing

HosseinNohrouzianAnne Karlen

About OurThesis

Introduction

Lattice

Binomial Tree

Trinomial Tree

Convergenceof BinomialModels toGBM

Part i

Part ii

Part iii

LatticeApproaches inDiscrete Time

Binomial Models

TrinomialModels

Case ofEquivalence

Conclusion

Conclusion

• Knowledge and understanding

• Ability to search, collect, evaluate and interpret

• Identify, formulate and solve problems

• Communication of our project to different groups

• Ability to put our work into a societal context and itsvalue within it

• Plans to continue and develop this research

• Questions?

• Thanks!

19/19