Beam Collision Feedbacks for future Lepton Colliders

Post on 07-Jan-2016

35 views 6 download

Tags:

description

Beam Collision Feedbacks for future Lepton Colliders. Philip Burrows John Adams Institute Oxford University. Outline. Introduction and system concept ILC design status CLIC design status FONT prototype systems performance Outstanding technical issues Summary . - PowerPoint PPT Presentation

transcript

1

Beam Collision Feedbacks

for future Lepton Colliders

Philip BurrowsJohn Adams Institute

Oxford University

P.N. Burrows ICHEP12 Melbourne 7/7/12

2

Outline

• Introduction and system concept

• ILC design status

• CLIC design status

• FONT prototype systems performance

• Outstanding technical issues• Summary

P.N. Burrows ICHEP12 Melbourne 7/7/12

3

Drive Beam Generation Complex

Main Beam Generation Complex

Compact Linear Collider (CLIC)

1.5 TeV / beam

P.N. Burrows ICHEP12 Melbourne 7/7/12

International Linear Collider

31 km

c. 250 GeV / beam

P.N. Burrows ICHEP12 Melbourne 7/7/12

4

5

Beam parameters

ILC (500) CLIC (3 TeV)

Electrons/bunch 0.75 0.37 10**10

Bunches/train 2820 312

Train repetition rate 5 50 Hz

Bunch separation 308 0.5ns

Train length 868 0.156us

Horizontal IP beam size 655 45nm

Vertical IP beam size 6 0.9 nm

Longitudinal IP beam size 300 45 um

Luminosity 2 6 10**34

P.N. Burrows ICHEP12 Melbourne 7/7/12

6

Beam parameters

ILC (500) CLIC (3 TeV)

Electrons/bunch 0.75 0.37 10**10

Bunches/train 2820 312

Train repetition rate 5 50 Hz

Bunch separation 308 0.5ns

Train length 868 0.156us

Horizontal IP beam size 655 45nm

Vertical IP beam size 6 0.9 nm

Longitudinal IP beam size 300 45 um

Luminosity 2 6 10**34

P.N. Burrows ICHEP12 Melbourne 7/7/12

7

Beam parameters

ILC (500) CLIC (3 TeV)

Electrons/bunch 0.75 0.37 10**10

Bunches/train 2820 312

Train repetition rate 5 50 Hz

Bunch separation 308 0.5ns

Train length 868 0.156us

Horizontal IP beam size 655 45nm

Vertical IP beam size 6 0.9 nm

Longitudinal IP beam size 300 45 um

Luminosity 2 6 10**34

P.N. Burrows ICHEP12 Melbourne 7/7/12

8

Beam parameters

ILC (500) CLIC (3 TeV)

Electrons/bunch 0.75 0.37 10**10

Bunches/train 2820 312

Train repetition rate 5 50 Hz

Bunch separation 308 0.5ns

Train length 868 0.156us

Horizontal IP beam size 655 45nm

Vertical IP beam size 6 0.9 nm

Longitudinal IP beam size 300 45 um

Luminosity 2 6 10**34

P.N. Burrows ICHEP12 Melbourne 7/7/12

9

IP beam feedback concept

Last line of defence against relative beam misalignment

Measure vertical position of outgoing beam and hence beam-beam kick angle

Use fast amplifier and kicker to correct vertical position of beam incoming to IR

FONT – Feedback On Nanosecond Timescales

P.N. Burrows ICHEP12 Melbourne 7/7/12

10

Beam parameters

ILC (500) CLIC (3 TeV)

Electrons/bunch 0.75 0.37 10**10

Bunches/train 2820 312

Train repetition rate 5 50 Hz

Bunch separation 308 0.5ns

Train length 868 0.156us

Horizontal IP beam size 655 45nm

Vertical IP beam size 6 0.9 nm

Longitudinal IP beam size 300 45 um

Luminosity 2 6 10**34

P.N. Burrows ICHEP12 Melbourne 7/7/12

11

General considerations

Time structure of bunch train:

ILC (500 GeV): c. 3000 bunches w. c. 300 ns separation

CLIC (3 TeV): c. 300 bunches w. c. 0.5 ns separation

Feedback latency:

ILC: O(100ns) latency budget allows digital approach

CLIC: O(10ns) latency requires analogue approach

Recall speed of light: c = 30 cm / ns:

FB hardware should be close to IP (especially for CLIC!)

Two systems, one on each side of IP, allow for redundancy

P.N. Burrows ICHEP12 Melbourne 7/7/12

12

IP FB Design Status: ILC

Conceptual design documented in ILC RDR (2007):

1. IP position feedback:

beam position correction up to +- 300 nm vertical at IP

2. IP angle feedback: hardware located few 100 metres upstream

conceptually very similar to position FB, less critical

3. Bunch-by-bunch luminosity signal (from BEAMCAL)

‘special’ systems requiring dedicated hardware + data links

More realistic engineering design in progress for TDP report (2012)

P.N. Burrows ICHEP12 Melbourne 7/7/12

13

ILC IR: SiD for illustration

Door

SiD

Cavern wall

Oriunno

P.N. Burrows ICHEP12 Melbourne 7/7/12

14

ILC IR: SiD for illustration

Door

SiD

Cavern wall

Oriunno

P.N. Burrows ICHEP12 Melbourne 7/7/12

15

Final Doublet Region (SiD)

Oriunno

P.N. Burrows ICHEP12 Melbourne 7/7/12

16

Final Doublet Region (SiD)

P.N. Burrows ICHEP12 Melbourne 7/7/12

Oriunno

17

Final Doublet Region (SiD)

P.N. Burrows ICHEP12 Melbourne 7/7/12

Oriunno

18

Final Doublet Region (SiD)

P.N. Burrows ICHEP12 Melbourne 7/7/12

Oriunno

IP Region (SiD)

IP Region (SiD)

Beamcal – QD0 Region (SiD)

IP FB BPM Detail (SiD)

23

Kicker BPM 1

Digital feedback

Analogue BPM processor

Driveamplifier

BPM 2

BPM 3

e-

FB prototypes: FONT at KEK/ATF

P.N. Burrows ICHEP12 Melbourne 7/7/12

24

Kicker BPM 1

Digital feedback

Analogue BPM processor

Driveamplifier

BPM 2

BPM 3

e-

ILC prototype: FONT4 at KEK/ATF

P.N. Burrows ICHEP12 Melbourne 7/7/12

25

Kicker BPM 1

Digital feedback

Analogue BPM processor

Driveamplifier

BPM 2

BPM 3

e-

ILC prototype: FONT4 at KEK/ATF

BPM resolution < 1umLatency ~ 130nsDrive power > 300nm

@ ILC P.N. Burrows ICHEP12 Melbourne

7/7/12

26

Latency

• Time of flight kicker – BPM: 12ns• Signal return time BPM – kicker: 32ns

Irreducible latency: 44ns

• BPM processor: 10ns• ADC/DAC (4.5 357 MHz cycles) 14ns• Signal processing (8 357 MHz cycles) 22ns• FPGA i/o 3ns• Amplifier 35ns• Kicker fill time 3ns

Electronics latency: 87ns

• Total latency budget: 131ns P.N. Burrows ICHEP12 Melbourne

7/7/12

27

ILC IP FB performance

Resta Lopez P.N. Burrows ICHEP12 Melbourne

7/7/12

28

IP FB Design Status: CLIC

Conceptual design developed and documented in CLIC CDR (2011)

NB primary method for control of beam collision overlap is via vibration isolation of the FF magnets, and dynamic correction of residual component motions

IP position feedback:

beam position correction up to +- 50 nm vertical at IP

More realistic engineering design can be developed in next project phase

P.N. Burrows ICHEP12 Melbourne 7/7/12

CLIC Final Doublet Region

Elsner29 P.N. Burrows ICHEP12 Melbourne

7/7/12

CLIC Final Doublet Region

Elsner30 P.N. Burrows ICHEP12 Melbourne

7/7/12

CLIC Final Doublet Region

Elsner31 P.N. Burrows ICHEP12 Melbourne

7/7/12

32

Kicker BPM 1

Analogue BPM processor

BPM 2

BPM 3

e-

CLIC prototype: FONT3 at KEK/ATF

P.N. Burrows ICHEP12 Melbourne 7/7/12

33

Kicker BPM 1

Analogue BPM processor

BPM 2

BPM 3

e-

CLIC prototype: FONT3 at KEK/ATF

Electronics latency ~ 13nsDrive power > 50nm

@ CLIC P.N. Burrows ICHEP12 Melbourne

7/7/12

34

CLIC IP FB performance

Single random seed of GM C

Resta Lopez P.N. Burrows ICHEP12 Melbourne

7/7/12

35

For noisy sites:

CLIC IP FB performance

factor 2 - 3 improvement

P.N. Burrows ICHEP12 Melbourne 7/7/12

36

Outstanding Technical Issues

• Component designs optimised for tight spatial environment

• Routing of cables• Operation of (ferrite) devices in large, spatially-

varying B-field

• Further studies of radiation environment

• Electronics location, rad hardness, shielding

• RF interference: beam FB electronics

kicker detector P.N. Burrows ICHEP12 Melbourne

7/7/12

37

Summary

• Well developed IP collision FB system designs for both ILC and CLIC

• Simulations demonstrate luminosity recovery capability

• Demonstrated prototypes with required performance parameters

• Progress on designing customised beamline components (ILC)

P.N. Burrows ICHEP12 Melbourne 7/7/12