Beesley, M. E. W. , & Vardanega, P. J. (2020). Parameter ......Beesley, M. E. W., & Vardanega, P. J....

Post on 10-Mar-2021

27 views 0 download

transcript

Beesley, M. E. W., & Vardanega, P. J. (2020). Parameter variability ofundrained shear strength and strain using a database of reconstitutedsoil tests. Canadian Geotechnical Journal, 57(8), 1247-1255.https://doi.org/10.1139/cgj-2019-0424

Publisher's PDF, also known as Version of record

Link to published version (if available):10.1139/cgj-2019-0424

Link to publication record in Explore Bristol ResearchPDF-document

University of Bristol - Explore Bristol ResearchGeneral rights

This document is made available in accordance with publisher policies. Please cite only thepublished version using the reference above. Full terms of use are available:http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

1

“Parameter variability of undrained shear strength and strain using a database of reconstituted soil tests” by M. E. W. Beesley and P. J. Vardanega

Online Supplement

Figure S1. Soils in the database plotted on the Casagrande Chart (A-line (orange) and U-line (grey) shown)

0.0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Plas

ticity

Ind

ex (

/100

%)

Liquid Limit (/100%)

2

Figure S2. Comparison of observed and predicted values of cu/'v0 CIUE and cu/'v0 CKUE predicted from a triaxial compression test: (a) CIU triaxial tests and (b) CKU triaxial tests

Reference:

Mayne, P. W. and Holtz, R. D., 1985. “Effect of principal stress rotation on clay strength”. In: Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco/ 12-16 August 1985, (Publications Committee of XI ICSMFE, Eds.) A.A. Balkema, Rotterdam, Netherlands, vol. 2, pp. 579-582.

Mayne & Holtz (1985) CIU

n=14 from 28 tests(11 of 14 data points from NC specimens)

80% of data predicted within Factor Error = 1.4

Reconstituted CIUn=50 from 100 tests(17 of 50 data points from NC specimens)

80% of data predicted within Factor Error = 1.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Obs

erve

d c u

/' v0

CIU

E

Predicted cu/'v0 CIUE

Mayne & Holtz (1985) CIUReconstituted CIU1:1y = 1.3x and y = x/1.3y = 1.4x and y = x/1.4

(a)

Mayne & Holtz (1985) CKUn=56 from 112 tests(41 of 56 data points from NC specimens)

80% of data predictedwithin Factor Error = 1.6

Reconstituted CKUn=29 from 58 tests

(14 of 29 data points from NC specimens)

80% of data predictedwithin Factor Error = 1.4

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

Obs

erve

d c u

/' v

0CKU

E

Predicted cu/'v0 CKUE

Mayne & Holtz (1985) CKUReconstituted CKU1:1y = 1.4x and y = x/1.4y = 1.6x and y = x/1.6

(b)

3

Figure S3. Comparison of observed and predicted values of 50 CIUE and 50 CKUE predicted from a triaxial compression test: (a) CIU triaxial tests and (b) CKU triaxial tests

Reconstituted CIUn=50 from 100 tests(17 of 50 data points from NC specimens)

80% of datapredicted within

Factor Error = 1.7

0.00

0.01

0.02

0.03

0.04

0.00 0.01 0.02 0.03 0.04

Obs

erve

d 5

0 CIU

E

Predicted 50 CIUE

Reconstituted CIU1:1y = 1.7x and y = x/1.7

(a)

Reconstituted CKUn=25 from 50 tests

(10 of 25 data points from NC specimens)

80% of data predicted within

Factor Error = 2.2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Obs

erve

d 5

0 CKU

E

Predicted 50 CKUE

Reconstituted CKU1:1y = 2.2x and y = x/2.2

(b)

4

Figure S4. Comparison of non-linearity parameter in extension and compression (a) for CIU tests and (b) for CKU tests

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

b CIU

E

bCIUC

Reconstituted CIU

1:1

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

b CKU

E

bCKUC

Reconstituted CKU1:1

(b)

5

Figure S5. Comparison of observed and predicted values of cu/'v0 CIU (Equations 9 and 10) tested by CIUC or CIUE

Figure S6. Comparison of observed and predicted values of cu/'v0 CKU (Equations 11 and 12) tested by CKUC or CKUE

Reconstituted CIUCn=115 tests

80% of data predicted within

Factor Error = 1.45

Reconstituted CIUEn=55 tests

80% of data predicted within

Factor Error = 1.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Obs

erve

d c u

/' v0

CIU

Predicted cu/'v0 CIU

Reconstituted CIUCReconstituted CIUE1:1y = 1.45x and y = x/1.45y = 1.3x and y = x/1.3

Reconstituted CKUCn=74 tests

80% of data predicted within

Factor Error = 1.2

Reconstituted CKUEn=34 tests

79% of data predicted within

Factor Error = 1.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Obs

erve

d c u

/' v0

CKU

Predicted cu/'v0 CKU

Reconstituted CKUCReconstituted CKUE1:1y = 1.2x and y = x/1.2y = 1.3x and y = x/1.3

6

Figure S7. Comparison of observed and predicted values of 50 CIU (Equations 5 and 6) tested by CIUC or CIUE

Figure S8. Comparison of observed and predicted values of 50 CKU (Equations 7 and 8) tested by CKUC or CKUE

Reconstituted CIUCn=114 tests

80% of data predicted within

Factor Error = 1.75

Reconstituted CIUEn=55 tests

80% of data predicted within

Factor Error = 1.7

0.00

0.01

0.02

0.03

0.04

0.00 0.01 0.02 0.03 0.04

50

CIU

50 CIU

Reconstituted CIUCReconstituted CIUE1:1y = 1.75x and y = x/1.75y = 1.7x and y = x/1.7

Reconstituted CKUEn=30 tests

80% of data predicted within

Factor Error = 2.1

Reconstituted CKUCn=67 tests

79% of data predicted within

Factor Error = 2.0

0.00

0.01

0.02

0.03

0.04

0.00 0.01 0.02 0.03 0.04

50

CKU

50 CKU

Reconstituted CKUCReconstituted CKUE1:1y = 2x and y = x/2y = 2.1x and y = x/2.1