Behind the scenes: Benchmarking sub-grid scales models in ... · Wavenumber L Numerical and...

Post on 30-Jul-2020

0 views 0 download

transcript

Behind the scenes: Benchmarking sub-grid scales models in global

simulations of stellar convective dynamo

1. Introduction

2. Implicit vs Explicit dissipation:modeling subgrid-scales effects

3. Numerical simulations of stellar dynamos: a new take on cyclicality

4. Conclusions

With P. Beaudoin, P. Charbonneau, A.S. Brun, S. Mathis, P. Smolarkiewicz

Antoine Strugarek

2Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

The many scales of solar magnetism

SunSize ~ 700 Mm

Rotation ~ monthCycle ~ 11 years

GranulesSize ~ 1 Mm

Life ~ 10 minutes

SpotsSize ~ 10 MmLife ~ days

3Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Challenge: ab-initio models of convective dynamos

[cred. A.S. Brun]

Tremendously high Reynolds (flow), Taylor (rotation), and Rayleigh (buoyancy,heat) numbers

4Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Variety of ‘stellar’ convective dynamos today

[Fan+14]

FSAM

[Kapyla+12,Warnecke+14]

PENCIL

[Augustson+15][Nelson+13]

[Brown+11]

ASH[Racine+11]

EULAG’s millenium simulation

[Masada+ 13]

Yin-Yang

5

Benchmarking convective dynamo simulations: a first take on convection

Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Strugarek+ 2016, Advances in Space Research

6Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

A set of anelastic MHD equations

τ ~ 20 rotationsDissipation

+Sub-grid scales effects

☛ Background state based on the anelastic benchmark of Jones+ 2011

7Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

ASH

Enhanced diffusion(& dynamic Smagorinsky, SLD)Pseudo-Spectral

Implicit dissipation(& explicit diffusion)

Finite volumes

EULAG-MHD

7Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

ASH

Enhanced diffusion(& dynamic Smagorinsky, SLD)Pseudo-Spectral

Implicit dissipation(& explicit diffusion)

Finite volumes

EULAG-MHD

Decomposition on spherical harmonicsRadial direction: Chebyshev poly. or FD

Linear parts integration: Crank-NicholsonNon-linear parts: Adams-Bashforth

Pressure is handled by taking the horizontal divergence of the mom. equation

Vectors: solenoidal decomposition

⇢u = r⇥ [Aer +r⇥ (Cer)]

8Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

A simple convection simulation with EULAG (I)

E1Vr

E2

�2000

�1000

0

1000

2000

[cm

/s]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

E1Vr

E2

�2000

�1000

0

1000

2000

[cm

/s]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

E1 E2

0.98

1.00

1.02

⌦/⌦

?E1 E2

0.98

1.00

1.02

⌦/⌦

?

A ‘benchmark’ simulation of a turbulent convection zone generating cylindrical %-contours

[cf Jones+ 2011, Icarus]

Ro ~ 0.06 Nρ = 1.5∆S = 2 103 erg/K/g

10Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Kinetic energy balance: scale-by-scale budget

Coriolis

Pressure Gradient

Buoyancy Reynolds stress

Viscous& subgrid model

Statistical steady-state:

[cf Strugarek+13]

The same procedure can be repeated for the heat equation

Clebsch-Gordan coefficients

11Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Spectral energy transfer in EULAG simulation

0 10 20 30 40 50 60

L

�100

�10�1

�10�2

�10�3

�10�4

�10�5

0

10�5

10�4

10�3

10�2

10�1

100

[erg

cm�

3s�

1]

E1

KE balance @ r/R = 0.850

0 10 20 30 40 50 60 70 80

L

E2

KE balance @ r/R = 0.844

CoriolisrP

BuoyancyAdvecTotal

0 10 20 30 40 50 60

L

�100

�10�1

�10�2

�10�3

�10�4

�10�5

0

10�5

10�4

10�3

10�2

10�1

100

[erg

cm�

3s�

1]

E1

KE balance @ r/R = 0.850

0 10 20 30 40 50 60 70 80

L

E2

KE balance @ r/R = 0.844

CoriolisrP

BuoyancyAdvecTotal

0 10 20 30 40 50 60

L

�10�2

�10�3

�10�4

�10�5

0

10�5

10�4

10�3

10�2

[erg

2g�

2K�

2s�

1]

E1

Entropy balance @ r/R = 0.850

0 10 20 30 40 50 60 70 80

L

E2

Entropy balance @ r/R = 0.844

Amb. Advec.Newt. cool.AdvectionTotal

0 10 20 30 40 50 60

L

�10�2

�10�3

�10�4

�10�5

0

10�5

10�4

10�3

10�2

[erg

2g�

2K�

2s�

1]

E1

Entropy balance @ r/R = 0.850

0 10 20 30 40 50 60 70 80

L

E2

Entropy balance @ r/R = 0.844

Amb. Advec.Newt. cool.AdvectionTotal

E1Vr

E2

�2000

�1000

0

1000

2000

[cm

/s]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

E1Vr

E2

�2000

�1000

0

1000

2000[c

m/s

]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

E1Vr

E2

�2000

�1000

0

1000

2000

[cm

/s]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

E1Vr

E2

�2000

�1000

0

1000

2000

[cm

/s]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

Wavenumber L Wavenumber L

Wavenumber L12Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Spectral energy transfer in EULAG simulation

0 10 20 30 40 50 60

L

�100

�10�1

�10�2

�10�3

�10�4

�10�5

0

10�5

10�4

10�3

10�2

10�1

100

[erg

cm�

3s�

1]

E1

KE balance @ r/R = 0.850

0 10 20 30 40 50 60 70 80

L

E2

KE balance @ r/R = 0.844

CoriolisrP

BuoyancyAdvecTotal

0 10 20 30 40 50 60

L

�100

�10�1

�10�2

�10�3

�10�4

�10�5

0

10�5

10�4

10�3

10�2

10�1

100

[erg

cm�

3s�

1]

E1

KE balance @ r/R = 0.850

0 10 20 30 40 50 60 70 80

L

E2

KE balance @ r/R = 0.844

CoriolisrP

BuoyancyAdvecTotal

0 10 20 30 40 50 60

L

�100

�10�1

�10�2

�10�3

�10�4

�10�5

0

10�5

10�4

10�3

10�2

10�1

100

[erg

cm�

3s�

1]

E1

KE balance @ r/R = 0.850

0 10 20 30 40 50 60 70 80

L

E2

KE balance @ r/R = 0.844

CoriolisrP

BuoyancyAdvecTotal

0 10 20 30 40 50 60

L

�100

�10�1

�10�2

�10�3

�10�4

�10�5

0

10�5

10�4

10�3

10�2

10�1

100

[ergc

m�3

s�1 ]

E1

KE balance @ r/R = 0.850

0 10 20 30 40 50 60 70 80

L

E2

KE balance @ r/R = 0.844

CoriolisrP

BuoyancyAdvecTotal

E1Vr

E2

�2000

�1000

0

1000

2000

[cm

/s]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

E1Vr

E2

�2000

�1000

0

1000

2000

[cm

/s]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

E1Vr

E2

�2000

�1000

0

1000

2000

[cm

/s]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

E1Vr

E2

�2000

�1000

0

1000

2000

[cm

/s]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

E1Vr

E2

�2000

�1000

0

1000

2000

[cm

/s]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

13Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Spectral energy transfer in EULAG simulation

0 10 20 30 40 50 60

L

�100

�10�1

�10�2

�10�3

�10�4

�10�5

0

10�5

10�4

10�3

10�2

10�1

100

[erg

cm�

3s�

1]

E1

KE balance @ r/R = 0.850

0 10 20 30 40 50 60 70 80

L

E2

KE balance @ r/R = 0.844

CoriolisrP

BuoyancyAdvecTotal

0 10 20 30 40 50 60

L

�100

�10�1

�10�2

�10�3

�10�4

�10�5

0

10�5

10�4

10�3

10�2

10�1

100

[erg

cm�

3s�

1]

E1

KE balance @ r/R = 0.850

0 10 20 30 40 50 60 70 80

L

E2

KE balance @ r/R = 0.844

CoriolisrP

BuoyancyAdvecTotal

0 10 20 30 40 50 60

L

�10�2

�10�3

�10�4

�10�5

0

10�5

10�4

10�3

10�2

[erg

2g�

2K�

2s�

1]

E1

Entropy balance @ r/R = 0.850

0 10 20 30 40 50 60 70 80

L

E2

Entropy balance @ r/R = 0.844

Amb. Advec.Newt. cool.AdvectionTotal

0 10 20 30 40 50 60

L

�10�2

�10�3

�10�4

�10�5

0

10�5

10�4

10�3

10�2

[erg

2g�

2K�

2s�

1]

E1

Entropy balance @ r/R = 0.850

0 10 20 30 40 50 60 70 80

L

E2

Entropy balance @ r/R = 0.844

Amb. Advec.Newt. cool.AdvectionTotal

E1Vr

E2

�2000

�1000

0

1000

2000

[cm

/s]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

E1Vr

E2

�2000

�1000

0

1000

2000[c

m/s

]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

E1Vr

E2

�2000

�1000

0

1000

2000

[cm

/s]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

E1Vr

E2

�2000

�1000

0

1000

2000

[cm

/s]

r/R? = 0.85S

�100

�50

0

50

100

[erg

/g/K

]

Wavenumber L Wavenumber L

[Strugarek+ 2016]

14Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Effective dissipation coefficients in EULAG

0.75 0.80 0.85 0.90 0.95r/R?

10

20

30

40

50

60

L

⌫e↵

11.0

11.2

11.4

11.6

11.8

12.0

12.2

12.4

log 1

0⌫

e↵[c

m2/s

]0.75 0.80 0.85 0.90 0.95

r/R?

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

[cm

2/s

]

⇥1012 ⌫e↵(r)

Averaged smoothed ⌫e↵

⌫fit

Standard Deviation along L

0 10 20 30 40 50 60

L

⌫e↵(L)

Averaged smoothed ⌫e↵

⌫fit(Lcut = 14,17,20)Standard Deviation along r

Effective viscosity

0.75 0.80 0.85 0.90 0.95r/R?

10

20

30

40

50

60

L

e↵

11.0

11.2

11.4

11.6

11.8

12.0

12.2

12.4

log 1

0

e↵[c

m2/s

]

0.75 0.80 0.85 0.90 0.95r/R?

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

[cm

2/s

]⇥1012 e↵(r)

Averaged smoothed e↵

fit

Standard Deviation along L

0 10 20 30 40 50 60

L

e↵(L)

Averaged smoothed e↵

fit(Lcut = 14,17,20)Standard Deviation along r

Effective heat diffusivity

15Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Effective dissipation coefficients in EULAG

0.75 0.80 0.85 0.90 0.95r/R?

10

20

30

40

50

60

L

Pre↵

�1.0

�0.8

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

log 1

0P

r e↵

0.75 0.80 0.85 0.90 0.95r/R?

0

1

2

3

4

5

6

7

8Pre↵(r)

Averaged smoothed Pre↵Standard Deviation along L

0 10 20 30 40 50 60

L

Pre↵(L)

Averaged smoothed Pre↵Standard Deviation along r

16Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Comparison with an ‘equivalent’ ASH simulation

In the ASH simulation, we have degrees of liberty as to what amount of dissipation to put at large and small scales

Encouraging results: qualitatively similar DR profile obtained with an ASH simulation with fitted κ,ν

Next: comparing dynamo cases with the same formalism…

100

101

102

103

104

105

106

107

108

EK L[e

rgcm

�3]

A14A17A20E1

100 101 102

L

10�1

100

101

102

103

ES L[e

rg2

g�2

K�

2]

A14A17A20E1

A14 A17 A20 E1

0.98

1.00

1.02

⌦/⌦

?

0.75 0.80 0.85 0.90 0.95r/R?

10

20

30

40

50

60

L

⌫e↵

11.0

11.2

11.4

11.6

11.8

12.0

12.2

12.4

log 1

0⌫

e↵[c

m2/s

]

0.75 0.80 0.85 0.90 0.95r/R?

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

[cm

2/s

]

⇥1012 ⌫e↵(r)

Averaged smoothed ⌫e↵

⌫fit

Standard Deviation along L

0 10 20 30 40 50 60

L

⌫e↵(L)

Averaged smoothed ⌫e↵

⌫fit(Lcut = 14,17,20)Standard Deviation along r

[Strugarek+ ASR 2016]

17

A new take on stellar magnetic cycles

Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

18Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Prototype cyclic dynamo in a convective enveloppe

Ro ~ 0.34 Nρ = 3.2 ΔS = 104 erg/K/g

0 100 200 300 400 500

Time [years]

�50

0

50

Latit

ude

[�]

B' at r = 0.75R�

�0.16

0.00

0.16

[T]

19Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Cycle period is inversely proportional to the Rossby number

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0log10 (Rossby number)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

log 1

0(P

cyc)

[yea

rs]

R�1.1±0.15o

Basic ingredients of stellar dynamos

- Differential rotation - Cyclonic turbulence

‘Go to’ parameter is the Rossby number

0.8 1.0 1.2 1.4 1.6 1.8log10 (Prot) [days]

-0.5

0.0

0.5

1.0

1.5lo

g 10

Pcy

c

⇣ Lbc

L�

⌘ 0.78� [y

ears

]⌦�1.06

?

BV07L11Simulations

20Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Magnetic cycles in a stellar context

0.8 1.0 1.2 1.4 1.6 1.8log10 (Prot) [days]

-0.5

0.0

0.5

1.0

1.5lo

g 10

Pcy

c

⇣ Lbc

L�

⌘ 0.78� [y

ears

]

BV07L11

A new take on observational data

0.8 1.0 1.2 1.4 1.6 1.8log10 (Prot) [days]

-0.5

0.0

0.5

1.0

1.5lo

g 10

Pcy

c

⇣ Lbc

L�

⌘ 0.78� [y

ears

]⌦�1.06

?

BV07L11Simulations

20Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Magnetic cycles in a stellar context

A new take on observational data

21Numerical and computational methods for simulation of all-scale geophysical flows, Reading, 05/10/2016 A. Strugarek

Conclusions & perspectives

A convective dynamo benchmark has been successfully developed to specifically study the impact of sub-grid scales modelling (dynamo comparison to be achieved soon)

A powerful method based on spectral transfers analysis is proposed to relate implicit and explicit sub-grid scales models

For the first time we are able to simulate cycles in 3D turbulent convection zone that vary systematically with the large scale parameters of the star (rotation, luminosity)

Very promising first comparisons with observational data

Future prospects: vary the convection zone aspect ratio, and explore states with higher degree of turbulence (closer to real stars)