Bernoulli numbers, Drinfeld associators, and the Kashiwara ... · Theorem (Drinfeld) GRT = exp(grt)...

Post on 27-Mar-2020

5 views 0 download

transcript

Bernoulli numbers, Drinfeld associators, and the

Kashiwara–Vergne problem

(based on joint works with B. Enriquez, E. Meinrenken,

M. Podkopaeva, P. Severa, C. Torossian)

Anton Alekseev

Department of MathematicsUniversity of Geneva, Switzerland

July 2, 2012

Bernoulli numbers

Jacob Bernoulli

1m+ 2

m+ · · ·+ n

m=

1

m + 1

m�

k=0

�m + 1

k

�Bkn

m+1−k

B0 = 1, B1 = −12 , B2 =

16 , B2k+1 = 0, for k ≥ 1

Generating function:

t

et − 1=

∞�

k=0

Bktk

k!

t

1− e−t= 1 +

t

2+

∞�

k=2

Bktk

k!

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 2 / 23

Campbell–Hausdorff series

x , y , z = generators of a free Lie algebra

ch(x , y) = log(exey) = x +

adx1− e−adx

y + O(y2)

�adx

1− e−adxy = y +

1

2[x , y ] +

∞�

k=2

Bk

k!adkx (y)

Theorem

ch(x , y) is the unique Lie series such that

ch(x , y) = x + y +12 [x , y ] + . . .

ch(x , ch(y , z)) = ch(ch(x , y), z)

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 3 / 23

Duflo isomorphism

K = field of characteristic 0,

g = Lie algebra over K, dim g < +∞

Theorem (Duflo, 1977)

Z (Ug) ∼= (Sg)g

Z (Ug) = the center of the universal enveloping algebra

(Sg)g = the ring of invariant polynomials

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 4 / 23

Notation

V = vector space

V ∗= its dual

SV = K[x1, . . . , xn]SV ∗ = K[[p1, . . . , pn]]

Consider elements of SV ∗ as (possibly) infinite order constant coefficient

differential operators

pi �→∂

∂xi

Example: n = 1

A = a0 + a1p + · · ·+ akpk+ . . .

�→ ∂A = a0 + a1d

dx+ · · ·+ ak

dk

dxk+ . . .

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 5 / 23

Duflo isomorphism

The isomorphism (Sg)g ∼= Z (Ug) is a restriction (to g invariants) of the

vector space isomorphism

Duf = Sym ◦ ∂J1/2

where Sym : Sg → Ug is the symmetrization map: xy �→ 12(xy + yx)

and

J12 (x) =

�det

�eadx − 1

adx

�� 12

=

= exp

�1

2Tr adx +

1

2

∞�

k=2

Bk

k · k!Tr(adkx )

�∈ Sg∗

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 6 / 23

Example

g = su(2) = �x , y , z�[x , y ] = z , [y , z ] = x , [z , x ] = y

g∗ = R3, (Sg)g = R[x2 + y2 + z2]

the Casimir element x2 + y2 + z2 ∈ Z (Ug)

Duf : x2 + y2+ z

2 �→ x2+ y

2+ z

2+

1

4

∂J12= 1 +

1

24(∂2

∂x2+

∂2

∂y2+

∂2

∂y2) + . . .

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 7 / 23

Questions

How difficult is the Duflo theorem?

Proofs:

Duflo (1977) ⇐ structure theory

Kontsevich (1997) ⇐ graphical calculus

Torossian, A.A. (2008) ⇐ Drinfeld associators

Why Bernoulli numbers?

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 8 / 23

Kashiwara–Vergne conjecture

1978

∃ A(x , y), B(x , y) Lie series in x and y , such that

1 x + y − log(eyex) = (1− e−adx )A+ (eady − 1)B ,

2 trg(adx ◦ ∂xA+ ady ◦ ∂yB) = 12trg

�adx

eadx−1+

adyeady−1

− adzeadz−1

− 1

�.

Notation: • z = log(exey ),

• ∂xA : g → g, ∂xA(u) =ddtA(x + tu, y)|t=0

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 9 / 23

KV conjecture

Remark: dim g < +∞ =⇒ trg well-defined

Theorem (Kashiwara, Vergne)

KV conjecture =⇒ Duflo isomorphism

Remark: Equation (1) is easy to solve

a =1− e−adx

adxA b =

eady − 1

adyB

x + y − log(eyex) = [x , a] + [y , b]

=⇒ many rational solutions

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 10 / 23

Definition: g is a quadratic Lie algebra if it carries a non-degenerate

symmetric bilinear form:

Q : g× g → K,

Q([x , y ], z) + Q(y , [x , z ]) = 0.

Example: g semisimple, Q Killing form

+ many other examples

Theorem (Torossian, A.A.)

For g quadratic,

KV 1 =⇒ KV 2

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 11 / 23

Theorem

The KV conjecture holds true for all finite-dimensional Lie algebras.

Meinrenken, A.A 2006, using Kontsevich

graphical calculus

Torossian, A.A 2008, using Drinfeld

associators

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 12 / 23

Drinfeld associators

Lie algebra of infinitesimal pure braids tn

Generators: ti ,j , i , j = 1, . . . , n

Relations:

ti ,i = 0, ti ,j = tj ,i ,

[ti ,j , tk,l ] = 0, i , j , k , l distinct

[ti ,j + ti ,k , tj ,k ] = 0.

In knot theory:

i j

= ti ,j ≈ log

� �

i j

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 13 / 23

Drinfeld associators

Notation: ti ,jk = ti ,j + ti ,k

Definition

Φ ∈ K � x , y � is a Drinfeld associator if

1 Φ is group-like (i.e., Φ = exp(Lie series))

2 Φ = 1 +124 [x , y ] + . . .

3 Pentagon equation:

Φ2,3,4

Φ1,23,4

Φ1,2,3

= Φ1,2,34

Φ12,3,4

Φ1,2,3

= Φ(t1,2, t2,3), Φ12,3,4

= Φ(t12,3, t3,4), etc.

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 14 / 23

Pentagon equation

((1 2) 3) 4 (1 (2 3)) 4

1 ((2 3) 4)

1 (2 (3 4))

(1 2) (3 4)

Φ1,2,3

Φ1,23,4

Φ2,3,4

Φ1,2,34

Φ12,3,4

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 15 / 23

Importance of associators

in knot theory (finite type invariants)

in number theory (multiple zeta values)

in quantization (Tamarkin’s approach)

in Lie theory (Etingof–Kazhdan quantization of Lie bialgebras)

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 16 / 23

Theorem (Drinfeld, Le–Murakami)

The pentagon equation admits an explicit solution over C:

Φ(x , y) =

k,m

�i

�m1+···+mk

ζ(m1, . . . ,mk)xm1−1

yxm2−1

y . . . xmk−1y

+ regularized terms

where

ζ(m1, . . . ,mk) =�

n1>···>nk>0

1

nm11 . . . nmk

k

Note: ζ(2m) = (−1)m+1 (2π)2m

2(2m)!B2m

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 17 / 23

Theorem (Drinfeld)

The pentagon equation admits solutions over Q

No explicit formulas available.

Definition

The (homogeneous) Grothendieck–Teichmuller Lie algebra grt consists ofall φ ∈ free Lie (x , y), deg(φ) ≥ 3, satisfying

φ1,2,3+ φ1,23,4

+ φ2,3,4= φ12,3,4

+ φ1,2,34.

Theorem (Drinfeld)

GRT = exp(grt) acts freely and transitively on the set of Drinfeld

associators.

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 18 / 23

Associators =⇒ KV

Let

ψ(ΦxΦ−1, y) =

�d

dτΦ(τx , τy)

τ=1

Φ(x , y)−1.

ψ is an element of the (inhomogeneous) Grothendieck–Teichmuller Lie

algebra gt.

Recall: ch(x , y) = ln(exey ).

Theorem (Enriquez, Torossian, Podkopaeva, Severa, A.A.)

A(x , y) = ψ(−ch(x , y), x)

B(x , y) = ψ(−ch(x , y), y)− 12ch(x , y)

solves KV.

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 19 / 23

Uniqueness problem

Definition

The Kashiwara–Vergne Lie algebra krv consists of all pairs a, b ∈ free Lie

(x , y), such that

[x , a] + [y , b] = 0

trg(adx ◦ ∂xa+ ady ◦ ∂yb) = 0 for all g

Theorem (Torossian, A.A.)

φ �→ (φ(−x − y , x), φ(−x − y , y))

is an injection of Lie algebras grt � krv

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 20 / 23

Conjectures

Conjecture: grt ∼= krv

numerical evidence up to degree 16.

deg 1 2 3 4 5 6 7 8 9 10 11 . . .dim 0 0 0 0 0 0 0 1 1 0 1 . . .

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 21 / 23

Conjectures

Number theory properties of associators =⇒ Lie algebra dmr0 (Racinet)

Theorem (Furusho)

grt � dmr0

Conjecture: grt ∼= dmr0

numerical evidence up to degree 19

Theorem (Schneps)

dmr0 � krv

Conjecture: dmr0 ∼= krv

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 22 / 23

Thank you!

A. Alekseev (UniGe) Bernoulli #’s, associators, and KV problem July 2 23 / 23