Biodiversity and Ecosystem Services: Implications of Future Bioenergy Cropping Systems

Post on 10-Mar-2016

217 views 1 download

Tags:

description

Doug Landis Presented at GLBRC on April 19, 2011.

transcript

Biodiversity and Ecosystem Services: Implications for Bioenergy Cropping Systems  

Douglas A. Landis

Area 4.4 Biodiversity Responses Team Leader, GLBRC

Professor of Insect Ecology Department of Entomology, Michigan State University

GLBRC Madison

April 19, 2011

!   Background on GLBRC Sustainability Research !   Biodiversity and Ecosystem Services !   Results from the Biodiversity Responses Team !   Implications for Bioenergy Landscapes

www.glbrc.org  

Outline  2

www.glbrc.org  

GLBRC Research Areas  3

www.glbrc.org  

GLBRC Sustainability Research Roadmap  

4

!   Plants !   MI - Kay Gross, Carol Baker, Pam Mosley !   WI - Randy Jackson

!   Microbes !   Tom Schmidt, Tracy Teal, Zarraz Lee !   Carolyn Malmstrom, Abby Schrotenboer, Collin Phillipo

!   Insects !   MI - Doug Landis, Ben Werling, Rufus Isaacs, Julianna Tuell !   WI - Claudio Gratton, Tim Meehan, Hanna Gaines, Heidi Liere

!   Birds !   MI - Bruce Robertson, Patrick Doran, Doug Schemske, !   WI - Tim Meehan

www.glbrc.org  

Biodiversity Team  5

Tscharntke et al. Ecology Letters 2005

Biodiversity in Agricultural Landscapes  

www.glbrc.org

7 Biodiversity and Ecosystem Services

!   Ecosystem Services – the benefits people obtain from ecosystems

!   Supporting !   Nutrient cycling, soil formation…

!   Provisioning !   Food, fuel…

!  Regulating !   Pollination, pest suppression...

!  Cultural !   Recreation, aesthetic…

Costanza et al. Nature 1997 Millennium Ecosystem Assessment 2005 Swinton et al. Am. J of Agric. Econ. 2006

•  Human  popula0on  growth      

The Challenge

•  Human  popula0on  growth      •  Cropland  &  pasture/grazing  occupies  

35%  of  the  ice-­‐free  land  surface  –  Foley  et  al  .  2007  PNAS  

Cropland

Grazing

The Challenge

•  Human  popula0on      •  Cropland  &  pasture/grazing  occupies  

35%  of  the  ice-­‐free  land  surface  –  Foley  et  al  .  2007  PNAS  

•  In  many  of  these  areas  humans  are  already  appropria0ng  >50%  of  NPP  

–  Haberl  et  al.  2007  PNAS    

Cropland

Grazing

The Challenge

Agricultural Intensification

! Can we deliver sustainable bioenergy systems that preserve the biodiversity on which agriculture depends?

•  “Declines  in  species  diversity  due  to  agricultural  intensifica0on  have  been  documented  for:  

–  birds  (Donald  et  al.  2001)  –  mammals  (Sotherton  1998)  –  insects  (Benton  et  al.  2002)  –  plants  (Aebischer  1991)  at  na0onal  and  landscape  scales.”  

Flynn et al. Ecology Letters. 2009

Low Diversity

High Diversity

Corn

Switchgrass

Mixed prairie

Poplar trees

Miscanthus Corn-Soybean-Canola

Native grasses

Early successional

Poten0al  Produc0on  Systems  

Arlington, WI

Kellogg Biological Station, MI

Lower Biodiversity §  Annual §  Monoculture §  Exotic §  High input

       Higher Biodiversity •  Perennial •  Polyculture •  Native •  Low input  

Biofuel  Crops  and  Biodiversity  

Corn Switchgrass Mixed prairie

Landis & Werling Insect Science 2010 Gardiner et al. BioEnergy Research 2010

!   Patterns of diversity !   Impact on ecosystem services !   Scale-up to regional models

www.glbrc.org  

Biodiversity & Ecosystem Services  

14

Biodiversity Sampling

!   Plant species richness consistently greatest in prairies and lowest in corn

!   Above-ground net primary productivity (ANPP) was highest in corn.

!   Relative abundance of important species and functional groups differ

Plant Biodiversity & Yield  

Michigan GLBRC Extensive Sites - 2009Annual Above-ground Production

0

500

1000

1500

2000

2500

Corn Prairie Switchgrass

Bio

mas

s (g

/m2 )

Michigan GLBRC Extensive Sites - 2009Relative Abundance

0%

20%

40%

60%

80%

100%

Corn Prairie Switchgrass

Other GrassSOSNUPANVIANOGEFORBSCORN

0

5

10

15

20

25

0 20 40 60 80 100 120

Num

ber

of S

peci

es

Area (m2)

Michigan Extensive Sites - Species RichnessMean +/- Std Error Corn

Prairie

Switchgrass

Species composition was sampled over two years (2008, 2009), n=10

Gross & Baker unpub. data

0  1  2  3  4  5  6  7  8  9  

0  

2  

4  

6  

8  

10  

12  

AG   ES   SF   MG   DF  

Microbes: Methanotrophs  

CH4 consumption Methanotroph richness

Methanotroph richness is positively correlated with methane consumption

Net

met

hane

con

sum

ptio

n (g

CH

4-C

ha-

1 da

y-1 )

Methanotroph richness

(OTU

s)

Treatment 0  1  2  3  4  5  6  7  8  9  

Corn   Switchgrass   Prairie  

Methanotroph diversity is higher in switchgrass and prairie sites than corn

Met

hano

troph

rich

ness

(O

TUs)

a

b b

Levine, Teal, Robertson and Schmidt (2011). The ISME Journal. In press Schmidt & Teal unpub. data

Schrotenboer, A.S., M. Allen, and C.M. Malmstrom. 2011. Global Change Biology Bioenergy (in press).

Differences in virus susceptibility most strongly related to biomass accumulation in switchgrass

Microbes: B/CYDV’s  

Microbes: B/CYDV’s and Landscape  

!   Landscape diversity influences aphid load

!   Aphid pressure decreases with

increasing landscape diversity within 1.5 km

!   Consistent with patterns of B/

CYDV’s at landscape scales

0

100

200

300

400

500

600

700

800

900

1000

Corn Switch Prairie

No. o

f bee

s co

llect

ed in

pan

trap

s

OsmiaMegachileHylaeusHoplitisCeratinaPeponapisMelissodesLasioglossumHalictusEuceraDufoureaCalliopsisBombusAugochlorellaAnthophoraAndrenaAgapostemonApisStelisSphecodesNomada

Vertical striped bars indicate clepto-parasitic bees

Solid bars indicate ground-nesting bees

Diagonal striped bars indicate stem-nesting bees

mellifera

Corn Switchgrass Prairie

Bee Abundance by Family  

Isaacs & Tuell unpub. data

0 20 40 60 80

100 120 140 160 180

2 3 4 5 Final

Cum

ulat

ive

wt.

gain

(g)

Week

corn prairie

Colony weight gain

Tuell, Rich, Meehan and Isaacs unpub. data 0 5

10 15 20 25 30

Corn Prairie

* P < 0.05

No. of queens

Pollinator colony health  

0 20 40 60 80

100 120 140 160 180

2 3 4 5 Final

Cum

ulat

ive

wt.

gain

(g)

Week

corn prairie

Colony weight gain

Tuell, Rich, Meehan and Isaacs unpub. data

Pollinator colony health  

0

0.2

0.4

0.6

0.8

Corn Prairie

* P < 0.05

Wt. per queen (g)

Fam

ily ri

chne

ss (p

artia

l res

idua

l) A

B

(A) Corn fields (B) High diversity prairie

!   Predator  family  richness  greatest  in  diverse  grasslands    

Predator Diversity  

Werling, Meehan, Gratton, & Landis unpub. data

Predator Communities  

Werling, Meehan, Gratton, & Landis. In review

Predation Services  

Werling et al. 2011 Global Change Biology Bioenergy doi: 10.1111/j.1757-1707.2011.01092.x

Gardiner  et  al.  2009  Ecological  Applica0ons  Landis  et  al.  2008  PNAS  

Predators  save  soybean  farmers  $13-­‐79  acre-­‐1  yr  -­‐1  in  reduced  pes0cide  applica0ons  and  yield  loss  

Increased  corn  in  the  landscape  reduces  key  predators  and  biocontrol  services  in  soybean      

Cos0ng  producers  $58  –  671  M  yr  -­‐1  in  forgone  biocontrol  services    (based  on  actual  2006-­‐07  increase  in  corn  in  MI,  MN,  IA,  WI)  

Valuing Predation Services At Landscape Scales

Develop Empirical Models  

1. Experimental results with multiple prey species lead to prediction model

2. Model predictions of current biocontrol

3. Validate model with USDA county insecticide data

Y = -0.40X + 0.45

Meehan et al. in prep.

Regional Forecasts  

Meehan et al. in prep.

Expanding annual bioenergy crops on marginal lands reduces biocontrol services up to 55%

Expanding perennial bioenergy crops on marginal lands increases biocontrol services up to 127%

Spec

ies

State listed (MI) species found in biofuel crops:

Northern Harrier Henslow’s Sparrow Dickcissel Grasshopper Sparrow

Prairie Prairie Prairie Prairie Switchgrass

0  

5  

10  

15  

20  

25  

30  

35  

40  

45  

Corn   Switchgrass   Prairie  

Nes0ng  

Foraging  

Bird: Overall Results  

Arthropod diversity--families by habitat

0

20

40

60

80

a

b

c

Mea

n #

arth

ropo

d fa

mili

es

Corn Switch Prairie

Arthropod Biomass (marginal means)

Bio

mas

s (g

)0.0

0.1

0.2

0.3

0.4

0.5

0.6

a

b

Arth

ropo

d bi

omas

s (g

)

Corn Switch Prairie

c

a

Bird: Food Sources  

Robertson et al. In prep.

Prairie Switchgrass Corn

Best model for breeding bird diversity

Log Patch Size (ha)

Spe

cies

rich

ness

Bird: Species-Area Relationship  

Robertson et al. 2011. Global Change Biology Bioenergy

Do  rela(onships  between  birds  and  bioenergy  crops  at  the  field  scale  hold  at  landscape  and  region  scales?  

Data  • 2008  NA  Breeding  Bird  Survey  • 2008  Cropland  Data  Layer  Results  • Landscape-­‐scaled  bird  diversity  is  nega0vely  related  to  annual  and  posi0vely  related  to  perennial  landcover  

Modeled (color map) and actual (points) bird diversity

Number of species

Bird: Landscape Results  

Meehan, T.D., A.H. Hurlbert and C. Gratton. 2010. PNAS. 107:18533-18538.

How  will  breeding  bird  diversity  change  if  marginal  land  goes  from  perennial  to  annual  land  cover,  or  vice  versa?  

Perennial to annual

Annual to perennial

Bird: Landscape Implications  

Meehan, T.D., A.H. Hurlbert and C. Gratton. 2010. PNAS. 107:18533-18538.

•  Increase biodiversity and ecosystem services

Win-Win Scenarios?  

•  Improve marginal lands

Win-Win Scenarios?  

!   Biodiversity supports critical ecosystem services in agricultural landscapes

!   Protect and enhance that biodiversity through informed landscape

management !   Cellulosic biofuels offer a unique opportunity to rethink agriculture to

maximize ecosystem services and enhance sustainability

www.glbrc.org  

Conclusions  36

www.glbrc.org

37

!   Productive !   economically profitable !   favorable energy return !   land-conserving !   mitigating effect on greenhouse gas emissions

!   Perennial !   cost less to maintain !   emit fewer greenhouse gases !   less prone to soil erosion and water pollution !   potential to conserve biodiversity and maintain ecosystem services.

! Polycultural !   pest and disease suppression !   nitrogen fixation !   nutrient and carbon conservation !   pollination services to surrounding crops

www.glbrc.org  

Key Biofuel Crop Attributes  38

Insects: Landis, D.A., M.M. Gardiner, W. van der Werf and S.M. Swinton. 2008. Increasing corn for biofuel production reduces

biocontrol services in agricultural landscapes. PNAS. 105: 20552-20557. Landis, D.A. and B.P. Werling. 2010. Arthropods and Biofuel Production Systems in North America. Insect Science. 17:1–17,

DOI 10.1111/j.1744-7917.2009.01310.x Gardiner, M., J. Tuell, R. Isaacs, J. Gibbs, J. Ascher and D.A. Landis. 2010. Implications of three model biofuel crops for

beneficial arthropods in agricultural landscapes. BioEnergy Research. 3:6–19. DOI 10.1007/s12155-009-9065-7 Werling, B.P., T. Meehan, B. Robertson, C. Gratton and D. Landis. 2011. Biocontrol potential varies with changes in biofuel-

crop plant communities and landscape perenniality. Global Change Biology-Bioenergy. In press. Birds: Meehan, T.D., A.H. Hurlbert and C. Gratton. 2010. Bird communities in future bioenergy landscapes of the Upper Midwest.

PNAS. 107:18533-18538. Webster, C.R., D.J. Flaspohler, R.D. Jackson, T.D. Meehan and C. Gratton. 2010. Diversity, productivity and landscape-level

effects in North American grasslands managed for biomass production. Biofuels. 1:451-461. Fletcher Jr., R.J., B.A. Robertson, J. Evans, P.J. Doran, J.R.R. Alavalapati and D.W. Schemske, 2010. Biodiversity

conservation in the era of biofuels: Risks and opportunities. Frontiers in Ecology and the Environment. DOI:10.1890/090091

Robertson, B.A., P.J. Doran, J.R. Robertson, E.R. Loomis and D.W. Schemske. 2011. Perennial biomass feedstocks enhance avian diversity. Global Change Biology Bioenergy. In press.

Robertson, B.A., Doran, P.J., Loomis, E.R., Robertson J.R., & Schemske, D.W. 2011. Avian use of perennial biomass feedstocks as post-breeding and migratory stopover habitat. PLoS One. In press.

Microbes: Schrotenboer, A. S., Allen, M., and Malmstrom, C.M., (2011). Modification of native grasses for biofuel production may

increase virus susceptibility. Global Change Biology Bioenergy, DOI 10.1111/j.1757-1707.2011.01093.x Levine, U.Y., T.K. Teal, G.P. Robertson and T.M. Schmidt (2011) Agriculture’s impact on microbial diversity and associated

fluxes of carbon dioxide and methane. The ISME Journal. In press. www.glbrc.org  

Biodiversity: Publications  39