Biorefinery: petrochemicals processing of renewable ... · Biorefinery: petrochemicals processing...

Post on 11-Jun-2020

15 views 0 download

transcript

Biorefinery: petrochemicals processing Biorefinery: petrochemicals processing

of renewable feedstockof renewable feedstock

A.V.Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences (TIPS RAS)

Moscow, Russian Federation

www.ips.ac.ruavolkov@ips.ac.ru

September 10th, 2011 Hannover, Germany

Alexey Volkov

TIPS RAS: Petrochemistry & Oil Refinery

TIPS RASwww.ips.ac.ru

More than 75 years expertise in Petrochemistry and Oil refinery:

� Fluid Catalytic cracking9 industrial units in the world

� Visbreaking of heavy residue4 industrial units in the world

� Catalytic dewaxing2 industrial units in Russia

� Acid-catalyzed homogeneous alky-

lation processes15 industrial units in the world

� Alkylation process based on zeolite catalysts

1 industrial unit

� More than 35 years of expertise in membrane science and membrane technology.

� New area, membrane catalysis, was created by Prof. M.V.Gryaznov in TIPS RAS.

� Deep expertise in development of novel membrane materials (e.g. high permeable glassy polymer)1970th: first industrial gas separation membranes based on PVTMS.

TIPS RAS: Membrane science and technology

TIPS RASwww.ips.ac.ru

TIPS RAS: Polymers and Nanocomposites

� More than 45 years of expertise in polymer science (novel polymers for different applications).

� Significant contribution in theory of macromolecular reactions and polymer modification.

� Polymer processing: rheology and introduction of nanocomposites.

� Biomedical polymers and drug delivery systems.

� Composite materials.

� Product commercialization (e.g. adhesives for biomedical applications).

TIPS RASwww.ips.ac.ru

TIPS RASwww.ips.ac.ru

Overall strategy

1. Integration with existing processes

� Same process principles used refinery and chemical plants.

� Introduction and further increasing of renewable feedstock part.

2. Flexibility in process scheme

� Utilization of “waste” by-products into new valuable products.

� Variability of products composition by control of catalyst and process conditions.

Organics to gas

TIPS RASwww.ips.ac.ru

TIPS RASwww.ips.ac.ru

Biogas: flexibility in processing

Organic wastes

Methanogenic community

BIOGAS

Heat capability:~21.5 MJ/m3

CH4 (50-70%vol.)CO2 (30-50% vol.)

Gas conditioning

Gas processing

BIOREACTOR

Air+CO2(green house/algae)

Heat capability:~34 MJ/m3

CH4 (>95%vol.)CO2 (<5% vol.)

CH4CO:H2

TIPS RASwww.ips.ac.ru

Biogas conditioning: membrane contactors for CO2 capture

CH4 + CO2(54 + 46 vol.%)

Absorber

Desorber

CH4

Membrane

CO2

CoolerHeater

Solvent Tdes, oC

Gas composition (%)

Absorber Desorber

CO2 CH4 CO2 CH4

H2O 18 16 84 73 27

K2CO3 18 26 74 92 8

K2CO3 60 5 95 99.6 0.4

TIPS RASwww.ips.ac.ru

Biogas conditioning: pilot testing

Unit capacity: 50 m3 biogas/hour

Upscale

Membrane module

Membrane module parameters:

Size, mm: 250х180х250Membrane area: 5 m2

Packing density: 450 m2/m3

TIPS RASwww.ips.ac.ru

Biogas processing to syngas

Major drawbacks in biogas processing to syngas:

� Steam reforming: CO2 content in biogas should be lower than 20% to avoid coke formation.

� Oxidation process: Oxygen production unit significantly increase CAPEX. If oxygen is replaced by air, additional separation unit is required to remove ballast gases (mainly, nitrogen) from syngas.

Solution:

� Partial oxidation in chemical reactor: no limitations for CO2 content in biogas!

� Membrane catalytic systems: compact device.

TIPS RASwww.ips.ac.ru

Biogas processing to syngas

Advantages:� In this approach, there is no nitrogen in syngas.

� Low explosion risk.

� Possibility to varying of syngas composition.

CH4 + MeOx CO + H2

МеМеМеOxМеOx

O2 +MeO2 +Me

CH4 + [О] → СО + 2Н2

CH4 + СО2 → 2СО + 2Н2

H2 + [O] → H2O

CO2 + H2 → CO + H2O

(1)

(2)

(3)

(4)

Pilot unit

TIPS RASwww.ips.ac.ru

Biogas processing to syngas in membrane reactor

Advantages:� Decreasing of unit size and catalyst consumption.

� Decreasing of side reaction due to lower contact time in reaction zone.

СН4 + [O]s → СО + 2Н2 (1)

СН4 + 4[О]s → СО2 + 2Н2О (2)

СН4 → С + 2Н2 (3)

С+ СО2 → 2СО (4)

СО + Н2О⇄ СО2 + Н2 (5)

[O]s – “structured” oxygen

Support

Active

components

(oxides)

Productivity,

L/h·dm3membr

Syngas

composition,

H2/CO

Conversion, %vol.

CH4 CO2

Ni-Al (granules) La-Ce 250 0.66 10.3 6.8

Ni-Al (membrane) La-Ce 3780 0.63 51.2 26.1

T=600оC, Wfeed=40 L/h, СН4/СО2=1

CH4 + CO2 → 2CO + 2H2Catalytic

membrane

Catalytic

membrane

CH4

CO2

CO

H2

TIPS RASwww.ips.ac.ru

Biogas processing to syngas in membrane reactor

La-Ce/Ni-Al

Pd-Mn/Ni-Al

Optimized membrane/catalytic system: conversion of CH4 and CO2as a function of T

Organics to liquid

TIPS RASwww.ips.ac.ru

TIPS RASwww.ips.ac.ru

Biomass and polymer waste: flexibility in processing

Biomass

Fermentation processing

Alcohols(EtOH, BuOH)

Synthetic oilBy-products(Acetone…)

Polymer waste

Thermo-catalytic processing

Heavy oilresidue

TIPS RASwww.ips.ac.ru

Pervaporation membrane bioreactor:biomass conversion into alcohols

General idea Fermentation product inhibition

<1% BuOH

1- 2 % BuOH

> 20 % BuOH

TIPS RASwww.ips.ac.ru

Recovering of organics from fermentation broth: thermopervaporation as a next step in energy efficient PV

Vacuum pervaporation(conventional approach)

Feed

CondenserТ < 0оС Permeate

Vacuumpump

Cooling plate

40оС

Permeate> 20 % BuOH

10 oC

Fermenter(Alcohols+СО2)

40 oC

< 0.5% BuOH

1-2% BuOH coolant

coolant

Air

gap

Membrane

Thermopervaporation

Advantages:

� No vacuum.

� Low condensation temperature 10-20оС.

0

0,2

0,4

0,6

0,8

1

1,2

0 50 100 150

membrane thickness mkm

Flu

x kg

/m2 h

0

20

40

60

80

1-b

uta

no

l in

per

mea

t, w

t.%

α = 11

α = 120

TIPS RASwww.ips.ac.ru

Thermopervaporation: model fermentation mixture

Liquid mixture

wt. %

Ethanol Butanol AcetoneButyric

acidAceticacid

Feed 0.15 1.00 0.45 0.10 0.40

Permeate 0.74 20.41 1.70 0.07 0.15

Model fermentation mixtureFeed temperature: 60oCCondensation temperature: 15oC

Feed: CBuOH=2 wt.%∆T = 45 oC

TIPS RASwww.ips.ac.ru

Alcohol conversion

~90 wt.% ~70 wt.% ~40 wt.%

Catalyst Hydrocarbons Fraction of non-linear molecules, %

Pt/Al2O3 Alkanes 6-8

Cu/support Olefines 25

W-Re Olefines 50

Pd - Zn Alaknes+Olefines 50

Pt/Al2O3 + MgO + [TiFeZrMo] Alkanes 91

Control of product composition:

� Reaction mechanism depends on catalytic system.

� Presence of some compounds could improve total yield and change product composition (20% glycerin in EtOH → double yield of hydrocarbons).

Data for ethanol

0

5

10

15

20

25

30

35

С1 С2 С3-С9 Oxygenates

yiel

d, w

t.%

Alkanes

Olefines

Oxygenates

0

5

10

15

20

25

30

35

С1 С2 С3-С9 Oxygenates

yiel

d, w

t.%

Alkanes

Olefins

Oxygenates

Effect of precursor (mono- and hetero-metallic complexes)

TIPS RASwww.ips.ac.ru

Ethanol conversion: control of process selectivity

0

1 0

2 0

3 0

4 0

5 0

Pd Z n Pd -Z n

Yield (fractionС3-С10),wt.% O le f in s

A lk a n e s

~90 wt.% ~70 wt.% ~40 wt.%

Effect of catalyst type

T=350oC, Ar

TIPS RASwww.ips.ac.ru

Conversion of alcohols mixture (C2-C5)

T=350oC, Ar

0

2

4

6

8

10

12

14

С3 С4 С5 С6 С7 С8

Yie

ld, w

t.%

Composition

алканы

Олефины

Alkanes

Olefines Feed composition

Ethanol 80%

Propanol 5%

Butanol 5%

Isoamyl alcohol 10%

� ∼40% of alkanes (C4-C8).

� ∼60% molecules with non-linear structure.

Fe2O3-MgO/Al2O3+Pt/Al2O3

TIPS RASwww.ips.ac.ru

Octane number buster: solketal

By-product in biodiesel production (∼100 kg per 1 ton of biodiesel)

Poor mixing with gasoline (hydrophilic nature: logKow=-1.76)

By-product of large-scale petrochemical processes (excess on the market)

Poor mixing with gasoline (hydrophilic nature: logKow=-0.24)

Increasing of octane number

Reduction of gum formation (good for gasoline from CC with high olefin content)

Good mixing with gasoline (hydrophobic nature: logKow=1.07)

+ =H+

Ketalization of glycerin

1/v, ч

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

Выход

золькеталя, %

65

70

75

80

85

90

95

100

Цеолит бета Zeolyst CP811Tl

Цеолит бета Zeolyst CP811Tl ("Реактор с структурированным режимом")Цеолит бета Zeolyst CP814ЕЦеолит бета Zeolyst CP814Е (Реактор со структурированным режимом)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

1/v, h

100

95

90

85

80

75

70

65

Solk

eta

lyie

ld,

%

Zeolyst CP811TI

Zeolyst CP811TI (Reactor with “structured regime”)

Zeolyst CP814E

Zeolyst CP814E(Reactor with “structured regime”)

New ketalization process developed by TIPS RAS:

� continuous reactor with “structured regime”

� zeolite-based catalyst

� acetone:glycerin = 6:1

� Treaction=25-40oC

continuous reactor with “structured regime”

TIPS RASwww.ips.ac.ru

Solketal synthesis: continuous reactor + zeolite

Ketalization is reversible reaction!

Increasing of conversion by:

� Continuous removal of water (distillation cannot be used).Solution: membrane(but still not so effective).

� Selection of catalysts.Solution: zeolites.

� Excess of substrate (acetone) in the feed.Solution: local increasing of acetone:glycerin ratio (like in alkylation process).

Size distribution of catalytic particles

TIPS RASwww.ips.ac.ru

Thermo-catalytic processing: concept of novel heavy residual hydroconversion

Catalystnanoparticles

Traditional catalyst

TIPS RASwww.ips.ac.ru

Scaling up of heavy residual hydroconversion technology

10

30

50

70

90

380 420 460 500

Con

vers

ion,

%w

t.

Temperature, оС

Capacity unit: 0.5 kg/h

Capacity unit: 2.0 kg/h

Capacity unit: 1000 kg/h

TIPS RASwww.ips.ac.ru

Tar conversion with wood and polymer wastes

Gas

Liquid

Unreacted residue

Water

Tar+Wood 20%

+PE 10%+Wood 20%+PE 10%

Yie

ld, %

T=450oC, p=7MPa, Mo-based catalyst (0.05%)

Advantages:

� Wood waste fraction can be increased up to 50% (or even higher after modification of mixing unit).

� Lignin is not a problem in this process.

� Nano-sized catalyst is recycled with unreacted residue.

TIPS RASwww.ips.ac.ru

Summary

� Biorefinery is the future of downstream industry.

� Renewable feedstock can be used at existing refineries and chemical plants (after some process improvements).

� Wide range of valuable products can be produced from biomass and polymer wastes.

THANK YOU FOR YOUR ATTENTION!!!

www.ips.ac.ruavolkov@ips.ac.ru

Biorefinery: petrochemicals processing of renewable feedstockBiorefinery: petrochemicals processing of renewable feedstock

Alexey Volkov

In cooperation with: