Bipolar Junction Transistor

Post on 03-Dec-2014

1,779 views 5 download

Tags:

description

 

transcript

Bipolar JunctionTransistor

Electronic CircuitsElectronic Circuits

CHO, Yong HeuiCHO, Yong Heui

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

2

1. Physical operation

Device structure

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

3

Mode EBJ CBJ

Cutoff Reverse Reverse

Active Forward Reverse

Rev. Act. Reverse Forward

Saturation Forward Forward

1. Physical operation

Device structure

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

4

1. Physical operation

Operation in active mode

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

5

1. Physical operation

Operation in forward active mode

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

6

1. Physical operation

Minority carrier profile

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

7

1. Physical operation

Collector current

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

8

For short Emitter

LP

IB2 = Qn/τb

1

1 1

Qn = AE·q·1/2·np(0)·W = (AE·q·W·ni2/2NA)evBE/VT

IB = IB1 + IB2 = IC/βDp

Dn

NA

ND

WB

Lp

W2

2Dnτbβ = +[ ]

-1: common emitter current gain

1. Physical operation

Base current

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

9

: common base current gain

α = αF, β = βF : at forward active

1. Physical operation

Emitter current

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

10

1. Physical operation

Equivalent model

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

11

1. Physical operation

Ebers-Moll model

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

12

Ebers-Moll Model at saturation Mode

1. Physical operation

Ebers-Moll model

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

13

Saturation Mode

1. Physical operation

Saturation mode

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

14

1. Physical operation

PNP transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

15

2. I-V

Example

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

16

2. I-V

Common-base

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

17

iC = ISeVBE/VT·(1+vCE/VA)

∂iC

∂vCE

ro ≡vBE=constant

-1

2. I-V

Common-emitter

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

18

βdc = ICQ/IBQ

βac = ΔiC/ΔiB : vCE=constant

2. I-V

Current gain

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

19

βforced = ICsat/IB

βforced < βF

2. I-V

Saturation voltage

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

20

∂vCE

∂iCRCEsat ≡ iB=IB

iC=ICsat

2. I-V

Saturation resistance

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

21

∂vCE

∂iCRCEsat ≡ iB=IB

iC=ICsat

2. I-V

Saturation resistance

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

22

vO = vCE = VCC - RCiC

vO = VCC - RC·ISevI/VT : at active

ICsat = (VCC – VCEsat)/RC

0 < vI < 0.5 : Cutoff (switch off)

: at saturation

Av ≡dvo

dvi vI=VBE

= -(1/VT)·ISeVBE/VT·RC

= -ICRC/VT = -VRC/VT

VRC = VCC - VCE

For max gain and swing

3. Amplifier

Large signal

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

23

vCE = VCC-RCiC

iC = VCC/RC – vCE/RC

vBE = VBB-RBiB

iB = VBB/RB – vBE/RB

3. Amplifier

Graphical analysis

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

24

3. Amplifier

Graphical analysis

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

25

IB(EOS)

3. Amplifier

Bias point

Operation as switch

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

26

4. BJT circuits

Example

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

27

-

4. BJT circuits

Example

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

28

4. BJT circuits

Example

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

29

4. BJT circuits

Example

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

30

RE : negative feedback

5. Bias

Discrete-circuit biasing

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

31

Biasing using a collector-to-base feedback resistor

VCB = IBRB = IERB/(β+1)

Small RB small swing

5. Bias

Discrete-circuit biasing

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

32

I = IREF = (VCC + VEE – VBE)/R

Large RB 사용가능

5. Bias

Current source biasing

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

33

6. Small-signal operation

Bias point

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

34

6. Small-signal operation

Transconductance

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

35

Small signal Emitter resistance : re

Voltage Gain

vc = -icRC = gmvbeRC = (-gmvbe)RC Av = vc/vbe = -gmRC = -ICRC/VT

6. Small-signal operation

Input resistance

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

36

6. Small-signal operation

Hybrid model

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

37

6. Small-signal operation

T model

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

38

6. Small-signal operation

Example

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

39

6. Small-signal operation

Example

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

40

Av = vc/vbe = -gm(RC//rO)

6. Small-signal operation

Output resistance

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

41

Bypass Capacitor : CE

Coupling Capacitor : CC1, CC2

At DC analysis

7. BJT amplifier

Common-emitter amplifier

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

42

Rib = rπ Rin = vi/ii = RB//Rib ≒ rπ vsigvi =Rin

Rin+Rsig

vsig= rπ

rπ+Rsig

vi = vπvO = -gmvπ(RC∥RL∥rO)

Av = -gm(RC∥RL∥rO) Avo = -gm(RC∥rO) ≒ -gmRC (rO≫RC)

Rin

Rin+Rsig

AvGv =

rπ+Rsig

≒ - gm(Rc∥RL∥rO) ≒ Av (rπ≫Rsig)

Rout = RC∥rO ≒ RC

Ais = ios/ii = -gmRin ≒ -gmrπ= -β

7. BJT amplifier

Small signal circuit

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

43

vi

re+Re

vo = -ic(RC∥RL) = -αie(RC∥RL) = -α(RC∥RL)

Rin = RB//Rib Rib = vi/ib = (β+1)(re+Re) ≒ rπ(1+gmRe)

rO = ∞

Av ≒ -(RC∥RL)/(re+Re)

Avo = -αRC/(re+Re) ≒ -gmRC/(1+gmRe) Rout = RC∥rO ≒ RC

Ais = ios/ii = -αie/(vi/Rin) = -αRinie/vi = -α(RB∥Rib)/(re+Re) = -α(β+1)(re+Re)/(re+Re) = -β

ie = vi/(re+Re)

7. BJT amplifier

Emitter resistance

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

44

Rin

Rin+Rsig

AvGv =

Rin

Rin+Rsig

= -α(RC∥RL)

re+Re ≒ -

β(RC∥RL)

Rsig+(β+1)(re+Re)

: less sensitive to β

vπ = vi re

re+Re

11+gmRe

≒ vi

Rib is increaed by the factor (1+gmRe)

The voltage gain is reduced by the factor (1+gmRe)

For the same nonlinear distortion, vi can be increased by the factor (1+gmRe)

Overall voltage gain is less sensitive to β

High frequency response is improved.

Effects of negative feedback through Re

7. BJT amplifier

Emitter resistance

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

45

vi

re+Re

vo = -αie(RC∥RL) = α(RC∥RL) ie = -vi/reRin = re

Av = gm(RC∥RL) Avo = gmRC Rout = RC

Ais = ios/ii = -αie/(-ie) = αvi

vsig

Rin

Rin+Rsig

re

re+Rsig

==

re

re+Rsig

AvGv = = gm(RC∥RL)

re

re+Rsig

α(RC∥RL)

re+Rsig

=

7. BJT amplifier

Common base amplifier

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

46

Rib = vb/ib = (β+1)[re+(ro∥RL)]

Rin = RB∥Rib

7. BJT amplifier

Emitter follower

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

47

vo/vsig ≒RL

[Rsig/(β+1)] +re+RL

RB≫Rsig, ro≫RL

Rout = ro∥Rsig∥RB

re + β+1[ ] Rsig∥RB

re + β+1≒

Gvo =ro

[(Rsig∥RB)/(β+1)] +re+roRsig+R

B

RB

7. BJT amplifier

Emitter follower

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

48

8. BJT capacitance

Internal capacitance

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

49

hfe : CE short-circuit current gain

Ib = Vπ· (1/rπ//sCπ//sCμ) Ic = Vπ· (gm - sCμ)

hfe ≡ Ic/Ib = 1/rπ+ sCπ+ sCμ

gm - sCμ

1 + s(Cπ+Cμ)rπ

gmrπ≒1 + s/ωβ

β0=: STC LPF

(Cπ+Cμ)rπ

1ωβ = ωT = β0·ωβ =

Cπ+Cμ

gm fT = 2π(Cπ+Cμ)

gm

8. BJT capacitance

High frequency model

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

50

High level Injection

8. BJT capacitance

Collector current

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

51

RB//rπ

RB//rπ+Rsig

AM = - gm(Rc∥RL∥rO)

9. Frequency response

Frequency bands

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

52

9. Frequency response

High frequency model

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

53

Iμ = sCμ(Vπ-Vo)

= sCμ(Vπ+ gmRL’Vπ)

= sCμ(1 + gmRL’)Vπ

= sCeqVπ

Ceq = sCμ(1 + gmRL’)

1 + s/ω0

1V’sigVπ =

ω0 = 1/CinRsig’

9. Frequency response

High frequency response

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

54

1 + s/ω0

1Vo

Vsig

RB

RB + Rsig

AM =1 + s/ω0

1= -

rπ+rx+(RB∥Rsig)

rπ·gmRL’

9. Frequency response

High frequency response

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

55

ωP1

ss+ ωP2

ss+ ωP3

ss+

Vo

Vsig

= - AM

High Freq. gain X 3 poles

9. Frequency response

Low frequency response

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

56

(RB//rπ)+Rsig+ sCC1

1

RB//rπVsigVπ =Vo = - gmVπ(Rc∥RL)

(RB//rπ)+Rsig

RB//rπ gm(Rc∥RL)

CC1[(RB//rπ)+Rsig]1

s +

s ωP1

ss+

Vo

Vsig

= - AM= -

9. Frequency response

Capacitance effect

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

57

(RB//Rsig)+(β+1)(re sCE

11

VsigIb =Vo = - βIb(Rc∥RL)

Vo

VsigωP2

ss+

= - AM= -

)

RB

RB + Rsig

CE[re+

1s +

s

RB//Rsig

β+1 ]

RB

RB + Rsig

β(Rc∥RL)

(RB//Rsig)+(β+1)re

9. Frequency response

Capacitance effect

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

58

(RB//rπ)+Rsig

RB//rπVsigVπ = Vo = - gmVπ

sCC2

1RC

++R

L

RL

RC

(RB//rπ)+Rsig

RB//rπ gm(Rc∥RL)

CC2(RC+RL)1

s +

s ωP3

ss+

Vo

Vsig

= - AM= -

9. Frequency response

Capacitance effect