BMI2 SS08 – Class 7 “functional MRI” Slide 1 Biomedical Imaging 2 Class 7 – Functional...

Post on 29-Jan-2016

214 views 0 download

transcript

BMI2 SS08 – Class 7 “functional MRI” Slide 1

Biomedical Imaging 2Biomedical Imaging 2

Class 7 – Functional Magnetic Resonance Imaging (fMRI)

Diffusion-Weighted Imaging (DWI)Diffusion Tensor Imaging (DTI)

Blood Oxygen-Level Dependent (BOLD) fMRI

03/04/08

BMI2 SS08 – Class 7 “functional MRI” Slide 2

2D FT pulse sequence (spin warp)2D FT pulse sequence (spin warp)

Most commonly employed pulse sequence

BMI2 SS08 – Class 7 “functional MRI” Slide 3

Radiation ↔ Rotating Magnetic Field IRadiation ↔ Rotating Magnetic Field I

N

S

B0

Static magnetic field

Sinusoidal EM field

Imagine that we replace the EM

field with…

y

x

z

BMI2 SS08 – Class 7 “functional MRI” Slide 4

S

S

Radiation ↔ Rotating Magnetic Field IIRadiation ↔ Rotating Magnetic Field II

N

S

B0 …two more magnets, whose fields are B0, that rotate, in opposite

directions, at the Larmor frequency

N

N

BMI2 SS08 – Class 7 “functional MRI” Slide 5

Radiation ↔ Rotating Magnetic Field IIIRadiation ↔ Rotating Magnetic Field III

Simplified bird’s-eye view of counter-rotating magnetic field vectors

t = 0 1/(8f0) 1/(4f0) 3/(8f0) 1/(2f0) 5/(8f0) 3/(4f0) 7/(8f0) 1/f0

So what does resulting B vs. t look like?

This time-dependent field is called B1

BMI2 SS08 – Class 7 “functional MRI” Slide 6

Rotating Reference Frame IRotating Reference Frame I

y

x

zB0

(1-10 T)

y

x

z, z’

y’x’

Instead of a constant rotation angle , let = 2f0t = 0t

Original (laboratory) coordinate system

Coordinate system rotated about z axis

counter-rotating magnetic fields

resultant field, sinusoidally varying

in x direction

x’ = ysin + xcos = -ysin0t + xcos0t

y’ = ycos - xsin = ycos0t + xsin0t

BMI2 SS08 – Class 7 “functional MRI” Slide 7

Rotating Reference Frame IIRotating Reference Frame II

B0

(1-10 T)

y

x

z, z’

y’x’

Rotating coordinate system, observed from laboratory frame

These axes are rotating in the xy plane, with frequency f0

B0

z’

y’

x’

Rotating coordinate system, observed from within itself

But what is the magnitude of B0 in this reference frame?

This magnetic field, rotating at 2f0, can be ignored; its frequency is too high to induce transitions between orientational states of the protons’ magnetic moments

This magnetic field, B1, is fixed in direction and has constant magnitude: ~0.01 T

BMI2 SS08 – Class 7 “functional MRI” Slide 8

Spin-Spin Relaxation ISpin-Spin Relaxation I

What is the T2 time constant associated with spin-spin interactions?

z׳ B0

MMz

Mtr If there were no spin-spin coupling, the transverse component of M, Mtr, would decay to 0 at the same rate as Mz returns to its original orientation

What are the effects of spin-spin coupling?

BMI2 SS08 – Class 7 “functional MRI” Slide 9

Spin-Spin Relaxation IISpin-Spin Relaxation II

W hat are the effects of spin-spin coupling?

Because the magnetic fields at individual 1H nuclei are not exactly B0, their Larmor frequencies are not exactly f0.

z׳ B0

MzBut the frequency of the rotating reference frame is exactly f0. So in this frame M appears to separate into many magnetization vectors the precess about z׳.

Some of them (f < f0) precess counterclockwise (viewed from above), others (f > f0) precess clockwise.

BMI2 SS08 – Class 7 “functional MRI” Slide 10

fMRI investigation of hemodynamicsfMRI investigation of hemodynamics

BMI2 SS08 – Class 7 “functional MRI” Slide 11

Diffusion-Weighted Imaging (DWI)Diffusion-Weighted Imaging (DWI)

BMI2 SS08 – Class 7 “functional MRI” Slide 12

Diffusion-weighted MRI (DWI)Diffusion-weighted MRI (DWI)

Stronger bipolar gradients → lower tissue velocities detectable

Blood flow velocities: ~(0.1 – 10) cm-s-1

Water diffusion velocity: ~200 μm-s-1

Using the same basic strategy as phase-contrast MRA, can image “apparent diffusion coefficient” (ADC)

Useful for diagnosing and staging conditions that significantly alter the mobility of water

e.g., cerebrovascular accident (“stroke,” apoplexy)

BMI2 SS08 – Class 7 “functional MRI” Slide 13

Examples of Diffusion-weighted imagesExamples of Diffusion-weighted images

BMI2 SS08 – Class 7 “functional MRI” Slide 14

Examples of Diffusion-weighted imagesExamples of Diffusion-weighted images

BMI2 SS08 – Class 7 “functional MRI” Slide 15

Diffusion Tensor Imaging (DTI)Diffusion Tensor Imaging (DTI)

BMI2 SS08 – Class 7 “functional MRI” Slide 16

How Many Bipolar Gradients?How Many Bipolar Gradients?

1

2

1 2

MRA

BMI2 SS08 – Class 7 “functional MRI” Slide 17

How Many Bipolar Gradients?How Many Bipolar Gradients?

DWI

BMI2 SS08 – Class 7 “functional MRI” Slide 18

DTI Concepts 1DTI Concepts 1

M.E. Shenton et al., http://splweb.bwh.harvard.edu:8000/pages/papers/pubs/yr2002.htm

BMI2 SS08 – Class 7 “functional MRI” Slide 19

DTI Concepts 2DTI Concepts 2

bDA e

Isotropic diffusion limit:

For anisotropic diffusion:

,

, ,

xx xy xz

yx yy yz

zx zy zz

xy yx xz zx yz zy

D D D

D D D

D D D

D D D D D D

D

, , , ,

exp ij iji x y z j x y z

A b D

BMI2 SS08 – Class 7 “functional MRI” Slide 20

Indices of Diffusion AnisotropyIndices of Diffusion Anisotropy

2 2 2

1 2 33RA

Relative anisotropy (RA):

Fractional anisotropy:

2 2 2 2 2 21 2 3 1 2 33 2FA

31 2 31VR

Volume ratio (VR):

BMI2 SS08 – Class 7 “functional MRI” Slide 21

Comparison of Anatomical, DWI, DTIComparison of Anatomical, DWI, DTI

D. Le Bihan et al., J. Magnetic Resonance Imaging 13: 534-546 (2001).

BMI2 SS08 – Class 7 “functional MRI” Slide 22

Comparison of Anisotropy IndicesComparison of Anisotropy Indices

D. Le Bihan et al., J. Magnetic Resonance Imaging 13: 534-546 (2001).

BMI2 SS08 – Class 7 “functional MRI” Slide 23

How Many Bipolar Gradients?How Many Bipolar Gradients?

DTI

D. Le Bihan et al., J. Magnetic Resonance Imaging 13: 534-546 (2001).

BMI2 SS08 – Class 7 “functional MRI” Slide 24

Diffusion Tensor MappingDiffusion Tensor Mapping

D. Le Bihan et al., J. Magnetic Resonance Imaging 13: 534-546 (2001).

BMI2 SS08 – Class 7 “functional MRI” Slide 25

Diffusion Tensor MappingDiffusion Tensor Mapping

D. Le Bihan et al., J. Magnetic Resonance Imaging 13: 534-546 (2001).

BMI2 SS08 – Class 7 “functional MRI” Slide 26

Magnetic Susceptibility-based Imaging

Magnetic Susceptibility-based Imaging

BMI2 SS08 – Class 7 “functional MRI” Slide 27

Magnetic interaction of HbMagnetic interaction of Hb

Image local field inhomogeneities (T2* weighted)

BMI2 SS08 – Class 7 “functional MRI” Slide 28

Magnetic Susceptibility Effects IMagnetic Susceptibility Effects I

BMI2 SS08 – Class 7 “functional MRI” Slide 29

Magnetic Susceptibility Effects IIMagnetic Susceptibility Effects II

BMI2 SS08 – Class 7 “functional MRI” Slide 30

Reminder: Neuro-vascular couplingReminder: Neuro-vascular coupling

intensity

BMI2 SS08 – Class 7 “functional MRI” Slide 31

Blood vesselsBlood vessels

Capillaries

BMI2 SS08 – Class 7 “functional MRI” Slide 32

Hemoglobin-Oxygen InteractionHemoglobin-Oxygen Interaction

BMI2 SS08 – Class 7 “functional MRI” Slide 33

Hemoglobin-Oxygen InteractionHemoglobin-Oxygen Interaction

BMI2 SS08 – Class 7 “functional MRI” Slide 34

Hemoglobin-Oxygen InteractionHemoglobin-Oxygen Interaction

BMI2 SS08 – Class 7 “functional MRI” Slide 35

Effect of Oxygen BindingEffect of Oxygen Binding

Deoxyhemoglobin: “puckered” heme; paramagnetic

Oxyhemoglobin: planar heme; diamagnetic

BMI2 SS08 – Class 7 “functional MRI” Slide 36

T2* weighted imagesT2* weighted images

rest activation

BMI2 SS08 – Class 7 “functional MRI” Slide 37

SubtractionSubtraction

BMI2 SS08 – Class 7 “functional MRI” Slide 38

Average for multiple stimulationsAverage for multiple stimulations

Spatial mean over 426 non-activated voxels

Spatial mean over 426 activated voxels

BMI2 SS08 – Class 7 “functional MRI” Slide 39

Example for visual stimulationExample for visual stimulation

BMI2 SS08 – Class 7 “functional MRI” Slide 40

fMRI studyfMRI study

BMI2 SS08 – Class 7 “functional MRI” Slide 41

AnalysisAnalysis

BMI2 SS08 – Class 7 “functional MRI” Slide 42

Another paradigmAnother paradigm

BMI2 SS08 – Class 7 “functional MRI” Slide 43

Data consideredData considered

Time series analysis

BMI2 SS08 – Class 7 “functional MRI” Slide 44

Exploring individual voxel time seriesExploring individual voxel time series

… not efficient or quantitative

BMI2 SS08 – Class 7 “functional MRI” Slide 45

Predicted ModelPredicted Model

BMI2 SS08 – Class 7 “functional MRI” Slide 46

Statistical Parametric Mapping (SPM)Statistical Parametric Mapping (SPM)

http://www.fil.ion.ucl.ac.uk/spm/

K. J. Friston, UCL, UK

BMI2 SS08 – Class 7 “functional MRI” Slide 47

SPM preprocessingSPM preprocessing

Movement correction:

Sensitivity: Large error variance may prevent us from finding activations

Specificity: Task correlated motion may appear as activation

Normalization: Deals with individual morphological differences

BMI2 SS08 – Class 7 “functional MRI” Slide 48

SPM preprocessingSPM preprocessing

Smoothing ():

Convolution with Gaussian kernel

Reduced effects of noise

BMI2 SS08 – Class 7 “functional MRI” Slide 49

General Linear Model GLMGeneral Linear Model GLM

BMI2 SS08 – Class 7 “functional MRI” Slide 50

GLM matricesGLM matrices

BMI2 SS08 – Class 7 “functional MRI” Slide 51

GLM matricesGLM matrices

BMI2 SS08 – Class 7 “functional MRI” Slide 52

GLM matricesGLM matrices

1 1 3 3 9 9Y t = X t + μ X t + β X t + + β X t + ε t

BMI2 SS08 – Class 7 “functional MRI” Slide 53

Correlation mapsCorrelation maps