半導体微細加工における プラズマ応用についてTetsuya Tatsumi Sony Semiconductor...

Post on 11-Feb-2020

4 views 0 download

transcript

Tetsuya Tatsumi

Sony Semiconductor Solutions Corporation

半導体微細加工における プラズマ応用について

1. Introduction

2. High etch rate & Selectivity

3. Suppression of CD variation

4. Minimization of plasma induced damage

5. Summary

Outline

2017.12.22 原子分子データ応用フォーラムセミナー 特別セッション「半導体製造・プラズマプロセスと原子分子過程・分光研究とのかかわり」

Moore’s Law

Number of transistors increased exponentially

Gate

Source Drain

SiO2

MOS transistor

Poly-Si

Si-sub.

Transistor size

0.7 x every 2 years

ITRS 2009

1995 2005 2000 2010 2015 2020 2025

1000

100

10

1

Gat

e le

ngth

(nm

)

Production year

Requirement of plasma technologies for miniaturization of transistors

International Technology Roadmap for Semiconductors 2009 Edition

Poly-Si

Si-sub.

Outline

1. Introduction

2.1990~ : High etch rate & Selectivity

3.2000~ : Suppression of CD variation

4.2010~ : Minimization of damage

5.Summary

Requirements (1990~)

1995 2005 2000 2010 2015 2020 2025

1000

100

10

1

Gat

e le

ngth

(nm

)

Production year

Gate

Source Drain

SiO2 ITRS 2009 Poly-Si

Si-sub.

Gate length > 100nm Anisotropic profile High etch rate High selectivity 100-200mmφ wafer

Process flow

Si

Si-substrate

SiO2

Gate SiO2

Poly-Si

Doped poly-Si

Si

Mask Poly-Si

SiO2

Resist mask Plasma etching SiO2 deposition

Etch back & Doping

Gate

Source Drain

SiO2

Poly-Si

Si-sub.

B.P.

Si 2700℃

SiBr4 154℃ SiCl4 58℃ SiF4 -86℃

Dry etching of poly-Si gate on thin oxide film

HBr/O2 plasma

Si (solid) + 4Br(gas) → SiBr4 (gas)

Si

Surface reaction of Si etching

Plasma ?

Si

Mask Poly-Si

SiO2

Resist mask Plasma etching

Wafer

Gas

Pump

Dry etching system

Sheath

Plasma ?

Si-Si < Si-Br < Si-O Binding energy:

Poly-Si

Si

Br

O Sidewall film (SiBrxOy)

SiO2

Dry etching of poly-Si gate on thin oxide film Sidewall film Anisotropic profile

Low ion energy High selectivity to SiO2

Main etch Over etch (Low ion energy)

SiBrx

Surface reaction of Si etching

Etching systems

iii) Capacitive Inductive Wave heating

Current loss to walls ↓

High density plasma Independent control of ion energy

CCP CCP

13MHz

N S

MERIE ME-RIE

13MHz

2f-CCP 2f-CCP

60/13MHz

ICP

ICP

13/13MHz

ECR ECR

2.45GHz 400kHz

i) Higher frequency

ii) Magnetic field

Collision rate↑ (ionization)

time

x, y, z

e

e

e

e

Plas

ma

dens

ity

Ion energy

1990~

Vertical profile High etch rate High selectivity

HBr/O2 High density source Low ion energy

1. Introduction

2.1990~ : High etch rate & Selectivity

3.2000~ : Suppression of CD variation

4.2010~ : Minimization of damage

5.Summary

Outline

1995 2005 2000 2010 2015 2020 2025

1000

100

10

1

Gat

e le

ngth

(nm

)

Production year

Gate length <100nm 300mmφ wafer High etch rate Anisotropic profile High selectivity Uniformity High-k/Metal Gate

Requirements (2000~)

193nm (ArF LASER)

Mask size

Physical gate length

Photo lithography

Resist mask Poly-Si

ITRS 2009

Mask size

Gate length

Slimming

Fluctuation of CD (Critical Dimension)

Narrow pattern Mask roughness

70nm

40nm±10% (CD)

Edge roughness

Top view of resist mask

Poly-Si

LWR (Line width roughness)

LWR is improved by HBr plasma cure Resist

HBr/O2 plasma w/ bias

Etching

HBr plasma w/o bias

HBr cure

Poly-Si

Poly-Si

O

O

O

O

O

O

O

OR4 R5

R1 R2 R3

O

O

O

O

O

O

O

OR4 R5

R1 R2 R3

Tg = 402.6 K

Tg=High (w/o cure)

O

O

OH

O

O

O

O

OR4 R5

R1 R2 R3

O

O

OH

O

O

O

O

OR4 R5

R1 R2 R3Tg=Low (with cure)

Tg = 364.6 K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 3 6 9 12 15 18 21 24 27 30

LWR [nm]

Freq

uenc

y

W/O HBr Cure W/ HBr Cure

Improvement of LWR

HBr cure

“Softening” of resist surface by HBr plasma treatment A. Ando, DPS2005 & Thin Solid Films 515 (2007) 4928

Mask size

Gate length

Slimming

Narrow pattern Mask roughness

70nm

40nm±10%

Edge roughness (Molecular size )

Wiggling ( Plasma Modification)

Top view of resist mask

Fluctuation of CD (Critical Dimension)

Poly-Si

Bending/Wiggling

Kurihara, DPS2004

C-F polymer

Fluorination

VUV, ion bombardment, and temperature

D. Nest , Plasma Process. Polym. 6 (2009) 649

Stress between softened layer of resist and deposition layer I. Sakai, JJAP 46 (2007) 4286

SiBrx

Nagase, DPS2001

CD non-uniformity within a wafer

Slimming, Surface cure, etc. Small pattern with less LWR

Uniformity within a wafer ?

CD non-uniformity within a wafer HBr/O2 plasma

SiBrx

Poly-Si

Si-sub.

SiO2

ICP

Control Knobs

~ Spatial distribution of Plasma density, Gas flow & Wafer temperature

Power

Gas flow

Sub. temperature

L. Chen, AVS2004

Center 37℃

Edge 30℃

CD uniformity

2000~

40nm±10%

Gat

e le

ngth

Mask size

Plasma cure, Control Knobs, EES Minimization of CD variation

within a chip

within a wafer

within a lot

1. Introduction

2.1990~ : High etch rate & Selectivity

3.2000~ : Suppression of CD variation

4.2010~ : Minimization of damage

5.Summary

Outline

Requirements (2010~)

Gate length <30nm Less damage 450mmΦ wafer High etch rate Anisotropic profile High selectivity Uniformity High-k/Metal gate Fin transistor

1995 2005 2000 2010 2015 2020 2025

1000

100

10

1

Gat

e le

ngth

(nm

)

Production year

ITRS 2009

http://www.intel.co.jp

Resist mask

Poly-Si

SiO2 (1.4nm)

Si-Sub.

Sel. > 100

Main etch Over etch DHF treatment

Si recess

Damaged layer formed during gate etching

(High selectivity ≠ Less Damage)

T. Ohchi., JJAP 47 (2008) 5324

Si recess

Si recess induces fluctuation of Vth or Id

Resist mask

Poly-Si

SiO2 (1.4nm)

Si-Sub.

Sel. > 100

Main etch Over etch DHF treatment

Si recess

0

4

8

12

16Dep

th fr

om th

e su

rface

(nm

)

BrO

1000 atomic%

O

Oxidizedlayer

5 nmTEM

Oxidized layer

Dislocated Si

HRBS

Damaged layer formed during gate etching

(High selectivity ≠ Less Damage)

HBr ?

Ion energy (eV)

Rp: 0.5 nm 2 nm 5 nm 10 nm15 nm

10

5

0

After injection of 1000atoms

50 30010 100

Quantitative control of IEDF

Minimization of ion induced damage

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300

IED

[arb

. uni

ts]

Energy [eV]

Vpp=400 V 270 V 160 V

50 V HBr/O2, 60mT Bias=67W

50V

Vpp=400V

270V

160V

0

5

10

15

0 400 800 Exposure time [s]

Dam

age

thic

knes

s [n

m]

50 V

Vpp=400 V

160 V

270 V

Suppression of Si recess

2f-CCP 2f-CCP

60/13MHz

T. Ohchi., DPS2007

Sidewall etching

Sidewall etching

SiO2 or High-k

SiN/SIO2

× × × × × ×

CF4/O2

Poly-Si

D it (×

1010

eV-1

cm-2

)

300

0

600

900

0 50 100

initial

Remaining thickness of SiO2 (nm)

Dit caused by Ion or Photon Dit: Interface trap density

Si

SiO2

Si

SiO2 Damage Si-sub

Sidewall etching

SiO2 or High-k

SiN/SIO2

× × × × × ×

CF4/O2 D it (

×10

10eV

-1cm

-2)

300

0

600

900

0 50 100

initial

Remaining thickness of SiO2 (nm)

Dit caused by Ion or Photon

Poly-Si

Dit: Interface trap density

Si

SiO2

Si

SiO2 Damage Si-sub

SiO2 Si-sub

Si

SiO2

Si

SiO225nm SiN

0 50 100

D it (eV

-1cm

-2) Si/SiO2

Si/SiO2/SiN 1011

1012

1013

initial 0 50 100

1010

Remaining thickness of SiO2, SIN(nm)

Damage at SiO2/Si interface

Dit (SiN) < Dit (SiO2)

0

20

40

60

80

100Pene

trat

ion

dept

h (n

m)

100

20

40

60

80

100 150 200 300 50 0

250

Si

SiO2

Wavelength (nm)

Dose(mJ/cm2)

D it (n

orm

alize

d X=

0)

UV (λ=248nm,KrF)

0 600 1200 0.5

1.0

1.5

100

20

40

60

80

0

× × × × × × × ×

UV induced damage

VUV is absorbed at top surface of SiO2 (or SiN)

2010~

Quantitative control of IEDF Prediction of ion and UV/VUV penetration Minimization of physical & radiation damage

Ion energy (eV)

Rp: 0.5 nm 2 nm 5 nm 10 nm15 nm

10

5

0

After injection of 1000atoms

50 30010 100

1995 2005 2000 2010 2015 2020 2025

1000

100

10

1

Gat

e le

ngth

(nm

)

Production year

ITRS 2009

Miniaturization limit ?

2020~ (?) Gate length <10nm? Less damage 450mmΦ wafer High etch rate Anisotropic prpfile High selectivity Uniformity High-k/Metal gate Fin transistor 3D CNT/Graphene Spin device・・・

‘85 ‘90 ‘95 ‘00 ‘05 ‘10

2t

g-line

60t

EUV

10t

ArF

5t

KrF

3t

i-line

10

8

6

4

2

Cos

t (Bi

llion$

‘15

25t

Immersion

0

Further miniatuarization Price of Lithography tools

Cost limit ?

SADP, SAQP・・・

ITRS 2013

Self-Aligned Double/Quadra Patterning

Further miniatuarization

3D LSI

High rate etching for TSV

Several chips are stacked and coupled to each other using “through Si via (TSV) ”

MRAM / Spin electronics

New device, New materials

WL WL

BL

BL

Buffer layerFree layerDielectric layerPinning layerAnti-ferromagnaetic layer

MTJ"0":Low

"1":High

(AFM layer)<MRAM> <MTJ device>

CoFeB

Graphene

New requirement for plasma process & system

Carbon electronics

(Ferromagnetic materials)

(CNT, graphene)

Toward future device fabrication

Monitoring ?

Control ?

Prediction ?

Data base ?

Quantitative understanding of plasma and surface reactions Quantitative manipulation of electrons, ions and photons

Fine pattern, TSV, New materials & structures

Summary

1990~ High etch rate & Selectivity ・HBr/O2 ・High density / low ion energy plasma

2000~ Suppression of CD fluctuation ・Suppression of LWR and Wiggling of mask ・Knobs for plasma uniformity control

2010~ Minimization of plasma induced damage ・IEDF control, UV/VUV control ・Advanced monitoring & simulation 2020~ New plasma processes for future devices ・Quantitative control of electrons, ions and photons