Calibration of sea ice dynamic parameters · 2013-12-16 · Calibration of sea ice dynamic...

Post on 09-Jun-2020

2 views 0 download

transcript

Calibration of sea ice

dynamic parameters

François Massonnet

H. Goosse, T. Fichefet, F. Counillon

IC3 • Barcelona

11th December 2013

h0

INPUT

clc; clear all; close all

g=9.81; % accélération de la

gravité

h0=0.34; % hauteur initiale du

niveau d’eau

dt=0.1; % pas de temps

tf=30; % durée de la

simulation

h=zeros(length(0:dt:tf),1) % h(t), à trouver

...

alpha=1.34 % Coefficient de

% bidouillage

...

for t=1:dt:tf

[a,b,c]=compute_gain(h(t-1))

...

clc; clear all; close all

g=9.81; % accélération de la

gravité

h0=0.34; % hauteur initiale du

niveau d’eau

dt=0.1; % pas de temps

tf=30; % durée de la

simulation

h=zeros(length(0:dt:tf),1) % h(t), à trouver

...

alpha=1.34 % Coefficient de

% bidouillage

...

for t=1:dt:tf

[a,b,c]=compute_gain(h(t-1))

...

www.nasa.gov

Winter 2010

km/day

Arctic sea ice

drifts (slowly)

Observed

1214 April 2012 sea ice drift

km/day

Observed

1214 April 2012 sea ice drift

Arctic sea ice

drifts (slowly)

km/day

Our ocean-sea ice model

underestimates sea ice speed

Observed Simulated

1214 April 2012 sea ice drift

t

umFFFFF InternalOceanAirTiltCoriolis

Sea ice drift is deduced

by solving Newton’s law

t

umFFFFF InternalOceanAirTiltCoriolis

Negligible at our

timescales

At daily timescales, 3 forces dominate

the sea ice momentum balance

Negligible at

our timescales

Negligible at our

timescales

Ca Cw P*

At daily timescales, 3 forces dominate

the sea ice momentum balance

3 key sea ice parameters

t

umFFFFF InternalOceanAirTiltCoriolis

Negligible at

our timescales

1. Parameter estimation with the ensemble Kalman filter

2. Improved sea ice dynamics with calibrated parameters

3. Side effects and impacts on the global sea ice cover

1. Parameter estimation with the ensemble Kalman filter

2. Improved sea ice dynamics with calibrated parameters

3. Side effects and impacts on the global sea ice cover

1. Model forecasts

The ensemble Kalman filter is

designed to sample model uncertainty

Observations

1. Model forecasts

2. Analysis

The ensemble Kalman filter is

designed to sample model uncertainty

Observations

1. Model forecasts

2. Analysis

The ensemble Kalman filter is

designed to sample model uncertainty

xa = xf + K (d – H xf )Analysis

Forecast

(NEMO-LIM3)Kalman gain

Observations

48h Arctic sea

ice drift

= + –

.

. ( )

[Evensen, 2003]

State estimation with

Ensemble Kalman Filter

xa = xf + K (d – H xf )Analysis

Forecast

(NEMO-LIM3)Kalman gain

= + –

.

. ( )

[Evensen, 2003] Parameters

Parameter estimation:

state is augmented

Ca

Cw

P*

Observations

48h Arctic sea

ice drift

Under perfect model assumptions, the

original set of parameters is retrieved

25 membersModel reference

Mean of members

Convergence in the real case,

new parameter values need to be tested

Model reference

25 members

Mean of members

1. Parameter estimation by state augmentation

2. Improved sea ice dynamics with new parameters

3. Side effects: impacts on the global sea ice cover

1. Parameter estimation by state augmentation

2. Improved sea ice dynamics with new parameters

3. Side effects: impacts on the global sea ice cover

km/day

Our ocean-sea ice model

underestimates sea ice drift

Observed Simulated, no calibration

1214 April 2012 sea ice drift

km/day

Calibration of one parameter:

in the right direction

Observed Simulated, P* calibrated

1214 April 2012 sea ice drift

km/day

Observed

1214 April 2012 sea ice drift

Simulated, (P*,Cw) calibrated

Calibration of two parameters:

further improvements

km/day

Observed

1214 April 2012 sea ice drift

Simulated, (P*,Cw ,Ca) calibrated

Calibration of three parameters:

not as expected

Frequency

[%]

Improved 2007-2012 distribution

of Arctic sea ice speeds

Frequency

[%]

Improved 2007-2012 distribution

of Arctic sea ice speeds

Frequency

[%]

Improved 2007-2012 distribution

of Arctic sea ice speeds

Frequency

[%]

Improved 2007-2012 distribution

of Arctic sea ice speeds

www.nasa.gov

Winter 2010

0OceanInternalAir FFF

Ca CwP*

0OceanInternalAir FFF

InternalAir FF

AirF

OceanInternalAir FFF

0

0

0

OceanF

Dominant

Dominant

Less common

Ca CwP*

Two dominant regimes for winter

Arctic sea ice drift at daily time scales

[Steele et al., 1997]

1.

2.

3.

1. Parameter estimation by state augmentation

2. Improved sea ice dynamics with new parameters

3. Side effects: impacts on the global sea ice cover

1. Parameter estimation by state augmentation

2. Improved sea ice dynamics with new parameters

3. Side effects: impacts on the global sea ice cover

[m]

March 2007-2012 sea ice thickness

Simulated,

no calibrationSimulated,

(P*,Cw) calibrated

Minor changes in

sea ice thickness

Thick ice gets thicker, thin ice gets thinner

[m]Sea ice thickness difference

Calibrated – not calibrated

Slight improvement in 2009-2012

sea ice thickness distribution

[Kurtz et al., 2013]

Limitations in a global

analysis framework

Monthly areal export of sea ice through Fram Strait

No parameter

calibrated

(P*,Cw)

calibrated

P* only

calibrated

1. Parameter estimation by state augmentation

2. Improved sea ice dynamics with new parameters

3. Side effects: impacts on the global sea ice cover

The calibration scheme

is extensible

Parameter calibration for GCMs / ESMs

Spatial parameter calibration

Time-dependent calibration

The calibration scheme

is extensible

Parameter calibration for GCMs / ESMs

Spatial parameter calibration

Time-dependent calibration

Take home messages

Nature ignores what is a parameter

Optimal parameter values are

configuration-dependent

Know your system before calibrating parameters

Calibrating too much/inappropriate parameters

may lead to suboptimal solutions

www.nasa.gov

Winter 2010

francois.massonnet@uclouvain.be

www.climate.be/u/fmasson

Thank you