carbonyl compounds Alkali metal mediated hydroboration ...ketone (1 mmol) followed by pinacolborane...

Post on 25-Oct-2020

0 views 0 download

transcript

Supporting Information for

Alkali metal mediated hydroboration and cyano sillylation of carbonyl compounds

Adimulam Harinath,a Jayeeta Bhattacharjee,a Hari Pada Nayekb and Tarun K. Panda*a

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India. Fax: + 91(40) 2301 6032; Tel: + 91(40) 2301 6036; E-mail: tpanda@iith.ac.in

Table of Contents

1. Table TS1. Crystallographic data and refinement parameters of 1, 3 and 4.

2. Figure FS1: 1H NMR spectra of L1.

3. Figure FS2: 13C NMR spectra of L1.

4. Figure FS3: 1H NMR spectra of complex 1.

5. Figure FS4: 13C NMR spectra of complex 1.

6. Figure FS5: 1H NMR spectra of complex 2.

7. Figure FS6: 13C NMR spectra of complex 2.

8. Figure FS7: 1H NMR spectra of complex 3.

9. Figure FS8: 13C NMR spectra of complex 3.

10. Figure FS9: 1H NMR spectra of complex 4.

11. Figure FS10: 13C NMR spectra of complex 4.

12. Figure FS11: 1H NMR spectra of complex 5.

13. Figure FS12: 13C NMR spectra of complex 5.

14. Figures FS13-FS63: Spectroscopic data of hydroborylation of aldehyde derivatives.

15. Figures FS64-FS93: Spectroscopic data of hydroborylation of ketone derivatives.

16. Figures FS94-FS114: Spectroscopic data of Selective reduction of carbonyl compounds.

17. Figures FS118-FS141: Spectroscopic data of TMSCN addition to carbonyl compounds.

18. Figures FS142-FS147: Spectroscopic data of Selective cyanosilylation of carbonyl

compounds.

19. Figures FS148-FS150: Spectroscopic data of Sequential cyanosilylation and hydroboration

of 4-acetylbenzaldehyde.

20. Kinetic study.

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2018

X-ray crystallographic analyses: Single crystals of complexes 1-4 were grown from a

concentrated solution of THF/n-pentane (3:1) in an argon-filled atmosphere at -35 °C. However,

single crystals of LH.HCl was obtained from a solution of ethanol at -35 °C. A crystal of suitable

dimensions of complexes 1-4 was mounted on a CryoLoop (Hampton Research Corp.) with a layer

of light mineral oil and placed in a nitrogen stream at 150(2) K. The crystals of LH.HCl was

measured at 298 K. All measurements were made on an Rigaku Supernova X-calibur Eos CCD

detector with graphite monochromatic Cu-Kα (1.54184 Å) radiation. The data for the compounds

LH.HCl and sodium complex 2 are not satisfactory and R factors are high. Thus only figures of

LH.HCl (Fig FS2) and complex 2 (Fig FS3) were used for comparison only. Crystal data and

structure refinement parameters of complexes 1, 3 and 4 are summarized in Table TS1. The

structures were solved by direct methods (SIR2004)[1] and refined on F2 by full-matrix least-

squares methods, using SHELXL-97.[2] Non-hydrogen atoms were anisotropically refined. H-

atoms were included in the refinement on calculated positions riding on their carrier atoms. The

function minimized was [w(Fo2- Fc2)2] (w = 1 / [2 (Fo2) + (aP)2 + bP]), where P = (Max(Fo2,0)

+ 2Fc2) / 3 with 2(Fo2) from counting statistics. The function R1 and wR2 were (||Fo| - |Fc||) /

|Fo| and [w(Fo2 - Fc2)2 / (wFo4)]1/2, respectively. The ORTEP-3 program was used to draw

the molecules of LH.HCl, 1, 2, and 4. However, Diamond 3 program was used to draw the

molecule of 3. Crystallographic data (excluding structure factors) for the structures reported in this

paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary

publication no. CCDC 1844011 (1), 1844012 (3), 1844010 (4). Copies of the data can be obtained

free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: +

(44)1223-336-033; email: deposit@ccdc.cam.ac.uk).

Figure FS1. Molecular solid-state structure of LH.HCl. The R factors of the complex LH.HCl are slightly

high due to poor data set. Nevertheless the Fig FS1 confirms the formation of the ligand LH.

Figure FS2. Solid state structure of sodium complex 2. The R factors of the complex 2 are slightly high

due to poor data set. Nevertheless the Fig FS2 confirms the four fold and five fold coordination around

the sodium ions.

Table TS1. Crystallographic data and refinement parameters of 1, 3 and 4.

Crystal Parameters

1 3 4

CCDC No. 1844011 1844012 1844010Empirical formula C38H54N2Li2O2 C19H27N2OK C46H70N4O4Mg

Formula weight 612.73 338.53 767.37

T (K) 150(2) K1.54184 A

152(2) K1.54184 A

150(2) K1.54184 A

λ (Å)Crystal system monoclinic triclinic monoclinicSpace group P 21/c P -1 P 21/ca(Å) 11.4708(4) 7.3434(12) 11.1013(4)b (Å) 10.5272(3) 11.2646(17) 37.9808(18) c(Å) 14.4429(4) 11.9562(19) 10.1334(3) 90.00 86.178(13) 90.00 105.612(3) 72.192(15) 94.099(3) 90.00 76.218(14) 90.00

V(Å3) 1679.71(9) 914.5(3) 4261.7(3)Z 2 2 4Dcalc g cm-3 1.211 1.229 1.196µ (mm-1) 0.567 2.575 0.723F(000) 664 364 1672Theta range for data collection

4.001 to 70.59Deg

3.883 to 70.713 deg

3.99 to 70.85 deg.

Limiting indices -

-13 ≤ h ≤ 13, -12 ≤ k ≤ 9, -17 ≤ l ≤ 13

-8<=h<=8, -7<=k<=13, -14<=l<=13.

-9<=h<=13, -40<=k<=46,-11<=l<=12.

Reflections collected / unique

6112 / 3151 [R(int) = 0.0220]

3359 / 2592 [R(int) = 0.0349]

17729 / 8061 [R(int) = 0.0531]

Completeness to theta

99.5 % 76.3 % 98.0 %

Absorption corraction

Semi-empirical from equivalents

Semi-empirical from equivalents

Semi-empirical from equivalents

Max. and min. transmission

1.00000 and 0.68112

1.00000 and 0.83710

1.00000 and 0.65420

Refinement method

Full-matrix least-squares on F^2

Full-matrix least-squares on F^2

Full-matrix least-squares on F^2

Data / restraints / parameters

3151 / 0 / 216 2592 / 0 / 215 8061 / 0 / 496

Goodness-of-fit on F2

1.123 1.084 1.047

Final R indices [I>2sigma(I)]

R1 = 0.0475, wR2 = 0.1388

R1 = 0.0732, wR2 = 0.1893

R1 = 0.0738, wR2 = 0.1870

R indices (all data) R1 = 0.0511, wR2 = 0.1413

R1 = 0.0957, wR2 = 0.2186

R1 = 0.0976, wR2 = 0.2089

Absolute structure parameter Largest diff. peak and hole

0.267 and -0.305 e.A^-3

0.683 and -0.666 e.A^-

0.550 and -0.359 e.A^-3

12 11 10 9 8 7 6 5 4 3 2 1 0

Chemical Shift (ppm)

11.73.11.01.01.10.90.7

10.5

8

8.19

7.27

6.83

6.52

6.51

6.51

6.25

6.24

6.24

2.18

1.82

1.82

1.79

1.76

1.73

1.70

Figure FS3. 1H NMR spectra of complex L1.

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0Chemical Shift (ppm)

146.

42

131.

27

121.

34

113.

5110

9.31

77.4

677

.15

76.8

3

56.9

2

43.3

8

36.6

2

29.6

7

Figure FS4. 13C NMR spectra of complex L1.

NH N

NH N

Figure FS5. 1H NMR spectra of complex 1.

Figure FS6. 13C NMR spectra of complex 1.

NNLi Li

N ON

O Ad

Ad

NNLi Li

N ON

O Ad

Ad

10 9 8 7 6 5 4 3 2 1 0Chemical Shift (ppm)

12.212.16.01.82.01.92.0

7.96

7.16

6.46

6.46

6.45

6.33

6.33

6.33

6.24

6.23

6.23

3.59

3.58

3.58

3.57

3.56

2.04

1.76

1.76

1.66

1.63

1.62

1.61

1.58

1.43

1.41

0.10

Figure FS7. 13C NMR spectra of complex 2.

Figure FS8. 13C NMR spectra of complex 2.

NNNa Na

N ON

Ad

Ad

OO

NNNa Na

N ON

Ad

Ad

OO

Figure FS9: 1H NMR spectra of complex 3.

Figure FS10. 13C NMR spectra of complex 3.

N

KNAd

K

O

O

N

N

n

Ad

N

KNAd

K

O

O

N

N

n

Ad

Figure FS11. 1H NMR spectra of Magnesium complex 4.

Figure FS12. 13C NMR spectra of magnesium complex 4.

NN

NN

Ad

Ad

O

OMg

NN

NN

Ad

Ad

O

OMg

Figure FS13. 1H NMR spectra of calcium complex 5.

220 200 180 160 140 120 100 80 60 40 20 0 -20Chemical Shift (ppm)

145.

4312

8.15

128.

0212

7.91

127.

7812

7.67

120.

8911

3.45

109.

60

67.6

7

56.6

646

.55

43.5

536

.77

36.5

430

.13

29.9

229

.68

25.6

6

2.49

Figure FS14. 13C NMR spectra of Calcium complex 5.

NN

NN

Ad

Ad

O

OCa

NN

NN

Ad

Ad

O

OCa

Typical procedure for hydroborylation of carbonyl compounds:

Hydroboylation of carbonyl compounds were carried out using the following standard protocol. In the glove

box, the chosen pre-catalyst (0.03 mmol) was loaded into a Schlenk tube, and subsequently the aldehyde or

ketone (1 mmol) followed by pinacolborane (1 mmol) were added. The reaction was stirred in an oil bath

at the desired temperature (30°C). Substrate conversion was monitored by examination of the 1H NMR,

which indicates the formation of new CH2 (for aldehydes) CH (ketones) peak and disappearance of

aldehyde proton.

Typical procedure for TMSCN addition to carbonyl compounds:

TMSCN addition of carbonyl compounds were carried out using the following standard protocol. In the

glove box, the chosen pre-catalyst (0.03 mmol) was loaded into a Schlenk tube, and subsequently the

aldehyde or ketone (1 mmol) followed by TMSCN (1 mmol) were added. The reaction was stirred in an

oil bath at the desired temperature (30°C).

Figure FS15. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(benzyloxy)-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane.

OB O

O

Figure S16. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2-(benzyloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure FS17. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(benzyloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

OB O

O

OB O

O

Figure FS18. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-((4-methoxybenzyl)oxy)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane.

Figure S19. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2-((4-methoxybenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

OB O

O

MeO

OB O

O

MeO

Figure FS20. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-((4-methoxybenzyl)oxy)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane.

Figure FS21. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-((4-isopropylbenzyl)oxy)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane.

OB O

O

MeO

OB O

O

Figure S22. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2-((4-isopropylbenzyl)oxy)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane.

Figure FS23. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-((4-isopropylbenzyl)oxy)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane.

OB O

O

OB O

O

Figure FS24. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-((2,4,6-

trimethoxybenzyl)oxy)-1,3,2-dioxaborolane.

Figure S25. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-((2,4,6-

trimethoxybenzyl)oxy)-1,3,2-dioxaborolane.

OB O

O

OMe

OMe

MeO

Figure FS26. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-((2,4,6-

trimethoxybenzyl)oxy)-1,3,2-dioxaborolane.

Figure FS27. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-((4-fluorobenzyl)oxy)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane.

OB O

O

OMe

OMe

MeO

OB O

O

OMe

OMe

MeO

OB O

O

F

70 65 60 55 50 45 40 35 30 25 20 15 10 5 0Chemical Shift (ppm)

22.3

7

Figure S28. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2-((4-fluorobenzyl)oxy)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane

Figure FS29. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-((4-fluorobenzyl)oxy)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane.

OB O

O

F

OB O

O

F

Figure FS30. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-((4-bromobenzyl)oxy)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane.

Figure S31. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2-((4-bromobenzyl)oxy)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane.

OB O

O

Br

Figure FS32. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-((4-bromobenzyl)oxy)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane.

Figure FS33. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-((4-

nitrobenzyl)oxy)-1,3,2-dioxaborolane.

OB O

O

Br

OB O

O

Br

OB O

O

O2N

Figure S34. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-((4-

nitrobenzyl)oxy)-1,3,2-dioxaborolane.

Figure FS35. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-((4-

nitrobenzyl)oxy)-1,3,2-dioxaborolane.

OB O

O

O2N

OB O

O

O2N

Figure FS36. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of (E)-4,4,5,5-tetramethyl-2-(styryloxy)-

1,3,2-dioxaborolane.

Figure S37. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of (E)-4,4,5,5-tetramethyl-2-(styryloxy)-

1,3,2-dioxaborolane.

OBO

O

OBO

O

Figure FS38. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of (E)-4,4,5,5-tetramethyl-2-(styryloxy)-

1,3,2-dioxaborolane.

Figure FS39. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)benzonitrile.

OBO

O

OB O

O

NC

OB O

O

NC

Figure S40. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)benzonitrile.

Figure FS41. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)benzonitrile.

OB O

O

NC

Figure FS42. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)phenol.

Figure S43. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)phenol.

O BO

OOH

O BO

OOH

Figure S44. 13C NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)phenol.

Figure FS45. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)phenol.

O BO

O

HO

O BO

OOH

Figure S46. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)phenol.

Figure S47. 13C NMR spectrum (128.4 MHz, 25°C, CDCl3) of 4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)phenol.

O BO

O

HO

O BO

O

HO

Figure FS48. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)pyridine.

Figure S49. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)pyridine.

NO

B O

O

NO

B O

O

Figure FS50. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)pyridine.

Figure FS51. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-(thiophen-2-ylmethoxy)-1,3,2-dioxaborolane.

NO

B O

O

SB O

OO

Figure S52. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-(thiophen-2-ylmethoxy)-1,3,2-dioxaborolane.

Figure FS53. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-(thiophen-2-ylmethoxy)-1,3,2-dioxaborolane.

SB O

OO

SB O

OO

Figure FS54. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)-1H-pyrrole.

Figure S55. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)-1H-pyrrole.

NH B O

OO

NH B O

OO

Figure FS56. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)-1H-pyrrole.

Figure FS57. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 3-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)-1H-indole.

NH B O

OO

NH

BO

OO

Figure S58. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 3-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)-1H-indole.

Figure FS59. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 3-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)-1H-indole.

NH

BO

OO

NH

BO

OO

Figure FS60. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2,5-bis(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)-1H-pyrrole.

60 55 50 45 40 35 30 25 20 15 10 5 0Chemical Shift (ppm)

22.1

3

Figure S61. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2,5-bis(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)-1H-pyrrole.

NHOB

O

O

O BO

O

NHOB

O

O

O BO

O

Figure FS62. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2,5-bis(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)-1H-pyrrole.

Figure FS63. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-ferrocenyl-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane.

NHOB

O

O

O BO

O

Fe

OBO

O

Figure S64. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2-ferrocenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure FS65. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-ferrocenyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Fe

OBO

O

Fe

OBO

O

Figure FS66. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(benzhydryloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S67. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2-(benzhydryloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

OB O

O

OB O

O

Figure FS68. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(benzhydryloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure FS69. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-(1-phenylethoxy)-1,3,2-dioxaborolane.

OB O

O

OB O

O

Figure S70. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-(1-phenylethoxy)-1,3,2-dioxaborolane.

Figure FS71. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-(1-phenylethoxy)-1,3,2-dioxaborolane.

OB O

O

OB O

O

Figure FS72. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-(1-(p-tolyl)ethoxy)-1,3,2-dioxaborolane.

Figure S73. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-(1-(p-tolyl)ethoxy)-1,3,2-dioxaborolane.

OB O

O

OB O

O

Figure FS74. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 4,4,5,5-tetramethyl-2-(1-(p-tolyl)ethoxy)-1,3,2-dioxaborolane.

Figure FS75. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(1-(2-chlorophenyl)ethoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

OB O

O

OB O

O

Cl

Figure S76. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2-(1-(2-chlorophenyl)ethoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure FS77. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(1-(2-chlorophenyl)ethoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

OB O

O

Cl

OB O

O

Cl

Figure FS78. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(1-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)ethyl)aniline.

Figure S79. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2-(1-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)ethyl)aniline.

OB O

O

NH2

OB O

O

NH2

Figure FS80. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(1-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)ethyl)aniline.

Figure FS81. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 3-(1-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)ethyl)aniline.

OB O

O

NH2

OB O

O

H2N

Figure S82. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 3-(1-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)ethyl)aniline.

Figure FS83. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 3-(1-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)ethyl)aniline.

OB O

O

H2N

OB O

O

H2N

Figure FS84. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 4-(1-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)ethyl)aniline.

Figure S85. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 4-(1-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)ethyl)aniline.

OB O

O

H2N

OB O

O

H2N

Figure FS86. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 4-(1-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)ethyl)aniline.

Figure FS87. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(phenyl((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)aniline.

OB O

O

H2N

OB O

O

NH2

Figure S88. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 2-(phenyl((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)aniline.

Figure FS89. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(phenyl((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)aniline.

OB O

O

NH2

OB O

O

NH2

Figure FS90. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 1,2-bis((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)-1,2-dihydroacenaphthylene.

Figure S91. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 1,2-bis((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)-1,2-dihydroacenaphthylene.

BO

O O

OOO

BO

O O

OOO

Figure FS92. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 1,2-bis((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)-1,2-dihydroacenaphthylene.

Figure FS93. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 1,2-bis((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)-1,2-dihydroacenaphthylene.

O OB BO

OO

O

BO

O O

OOO

Figure S94. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of 1,2-bis((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)-1,2-dihydroacenaphthylene.

Figure FS95. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 1,2-bis((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)-1,2-dihydroacenaphthylene.

O OB BO

OO

O

Figure FS96. 1H NMR spectrum (128.4 MHz, 25°C, CDCl3) of chemo selective reduction of aldehydes.

Figure FS97. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of Chemo selective reduction of aldehydes.

O H O

1 eq HBpinOB O

O

>95%1 eq 1.5 eq

O H O

1 eq HBpinOB O

O

>95%1 eq 1.5 eq

Figure FS98. 13C NMR spectrum (100 MHz, 25°C, CDCl3) Chemo selective reduction of aldehyde.

Figure FS99. 1H NMR spectrum (128.4 MHz, 25°C, CDCl3) of chemo selective reduction of aldehydes.

O H O

1 eq HBpinOB O

O

>95%1 eq 1.5 eq

O H O

F Cl

1 eq HBpinOB O

O

F

O

Cl99%

70 65 60 55 50 45 40 35 30 25 20 15 10 5 0Chemical Shift (ppm)

22.3

7

Figure FS100. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of Chemo selective reduction of aldehydes.

Figure FS101.13C NMR spectrum (100 MHz, 25°C, CDCl3) Chemo selective reduction of aldehyde.

O H O

F Cl

1 eq HBpinOB O

O

F

O

Cl99%

O H O

F Cl

1 eq HBpinOB O

O

F

O

Cl99%

Figure FS102.1H NMR spectrum (128.4 MHz, 25°C, CDCl3) of chemo selective reduction of aldehydes.

Figure FS103. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of Chemo selective reduction of aldehydes.

H

O

H

OB

Cat 3

Tol, 5 mol%

O

O

OB

OH

O O

H

O

H

OB

Cat 3

Tol, 5 mol%

O

O

OB

OH

O O

Figure FS104.13C NMR spectrum (100 MHz, 25°C, CDCl3) Chemo selective reduction of aldehyde.

Figure FS105.1H NMR spectrum (128.4 MHz, 25°C, CDCl3) of chemo selective reduction of aldehydes.

H

O

H

OB

Cat 3

Tol, 5 mol%

O

O

OB

OH

O O

H

O

H

OB

Cat 3 ( 3mol%)

Tol

O

O

H3CO

O

H3CO

O

OB

OH

Figure FS106. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of Chemo selective reduction of aldehydes.

Figure FS107.13C NMR spectrum (100 MHz, 25°C, CDCl3) Chemo selective reduction of aldehyde.

H

O

H

OB

Cat 3 ( 3mol%)

Tol

O

O

H3CO

O

H3CO

O

OB

OH

H

O

H

OB

Cat 3 ( 3mol%)

Tol

O

O

H3CO

O

H3CO

O

OB

OH

Figure FS108.1H NMR spectrum (128.4 MHz, 25°C, CDCl3) of chemo selective reduction of aldehydes.

Figure FS109. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of Chemo selective reduction of aldehydes.

H

O

H

OB

Cat 3 ( 3 mol%)

Tol

O

O

OB

OH

NH

NH

O O

H

O

H

OB

Cat 3 ( 3 mol%)

Tol

O

O

OB

OH

NH

NH

O O

Figure FS110.13C NMR spectrum (100 MHz, 25°C, CDCl3) Chemo selective reduction of aldehyde.

Figure FS111.1H NMR spectrum (128.4 MHz, 25°C, CDCl3) of chemo selective reduction of aldehydes.

H

O

H

OB

Cat 3 ( 3 mol%)

Tol

O

O

OB

OH

NH

NH

O O

H

O

H

OB

Cat 3 ( 3 mol%)

Tol

O

O

OB

OH

O O

O O

Figure FS112. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of Chemo selective reduction of aldehydes.

Figure FS113.13C NMR spectrum (100 MHz, 25°C, CDCl3) Chemo selective reduction of aldehyde.

H

O

H

OB

Cat 3 ( 3 mol%)

Tol

O

O

OB

OH

O O

O O

H

O

H

OB

Cat 3 ( 3 mol%)

Tol

O

O

OB

OH

O O

O O

Figure FS114.1H NMR spectrum (128.4 MHz, 25°C, CDCl3) of chemo selective reduction of 16-dehydropregnolone acetate.

Figure FS115. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of Chemo selective reduction of 16-dehydropregnolone acetate.

O

O

O

H

H H

BO

O

O

O

O

H

H H

BO

O

Figure FS116.13C NMR spectrum (100 MHz, 25°C, CDCl3) Chemo selective reduction 16-dehydropregnolone acetate.

Figure FS117.1H NMR spectrum (128.4 MHz, 25°C, CDCl3) of complex 3 in presence of excess p-OMe Benzaldehyde

O

O

O

H

H H

BO

O

Figure FS118.1H NMR spectrum (128.4 MHz, 25°C, CDCl3) of complex 3 in presence of excess HBpin.

Figure FS119. 11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of complex 3 in presence of excess HBpin.

Figure FS120. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-phenyl-2 ((trimethylsilyl)oxy)acetonitrile.

Figure FS121. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-phenyl-2-((trimethylsilyl)oxy)acetonitrile.

OSiMe3NC

OSiMe3NC

Figure FS122. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(4-methoxyphenyl)-2-((trimethylsilyl)oxy)acetonitrile.

Figure FS123. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(4-methoxyphenyl)-2-((trimethylsilyl)oxy)acetonitrile.

OSiMe3

OMe

NC

OSiMe3

OMe

NC

Figure FS124. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(4-isopropylphenyl)-2-((trimethylsilyl)oxy)acetonitrile.

Figure FS125. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(4-isopropylphenyl)-2-((trimethylsilyl)oxy)acetonitrile.

OSiMe3NC

OSiMe3NC

Figure FS126. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(2,4,6-trimethoxyphenyl)-2-((trimethylsilyl)oxy)acetonitrile.

Figure FS127. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(2,4,6-trimethoxyphenyl)-2-((trimethylsilyl)oxy)acetonitrile.

OSiMe3

OMe

NC

OMeMeO

OSiMe3

OMe

NC

OMeMeO

Figure FS128. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(4-fluorophenyl)-2-((trimethylsilyl)oxy)acetonitrile.

Figure FS129. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(4-fluorophenyl)-2-((trimethylsilyl)oxy)acetonitrile.

OSiMe3

F

NC

OSiMe3

F

NC

Figure FS130. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(4-bromophenyl)-2-((trimethylsilyl)oxy)acetonitrile.

Figure FS131. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(4-bromophenyl)-2-((trimethylsilyl)oxy)acetonitrile.

OSiMe3

Br

NC

OSiMe3

Br

NC

Figure FS132. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(2-nitrophenyl)-2-((trimethylsilyl)oxy)acetonitrile.

Figure FS133. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(2-nitrophenyl)-2-((trimethylsilyl)oxy)acetonitrile.

OSiMe3NC

O2N

OSiMe3NC

O2N

Figure FS134. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(1H-pyrrol-2-yl)-2-((trimethylsilyl)oxy)acetonitrile.

Figure FS135. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(1H-pyrrol-2-yl)-2-((trimethylsilyl)oxy)acetonitrile.

HN O SiMe3

CN

HN O SiMe3

CN

Figure FS136. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(1H-indol-3-yl)-2-((trimethylsilyl)oxy)acetonitrile.

Figure FS137. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(1H-indol-3-yl)-2-((trimethylsilyl)oxy)acetonitrile.

HN

CNMe3SiO

HN

CNMe3SiO

Figure FS138. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-phenyl-2-((trimethylsilyl)oxy)propanenitrile

Figure FS139. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-phenyl-2-((trimethylsilyl)oxy)propanenitrile.

OTMSNC

OTMSNC

Figure FS140. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(p-tolyl)-2-((trimethylsilyl)oxy)propanenitrile.

Figure FS141. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(p-tolyl)-2-((trimethylsilyl)oxy)propanenitrile.

OTMSNC

OTMSNC

Figure FS142. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2-(2-nitrophenyl)-2-((trimethylsilyl)oxy)propanenitrile.

Figure FS143. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2-(2-nitrophenyl)-2-((trimethylsilyl)oxy)propanenitrile.

OSiMe3NC

NO2

OSiMe3NC

NO2

Figure FS144. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of 2,2'-(1H-pyrrole-2,5-diyl)bis(2-((trimethylsilyl)oxy)acetonitrile).

Figure FS145. 13C NMR spectrum (100 MHz, 25°C, CDCl3) of 2,2'-(1H-pyrrole-2,5-diyl)bis(2-((trimethylsilyl)oxy)acetonitrile).

HN

OSiMe3

Me3SiO CN

CN

HN

OSiMe3

Me3SiO CN

CN

Figure FS146.1H NMR spectrum (400 MHz, 25°C, CDCl3) of chemo selective cyanosilylation of aldehydes.

Figure FS147.13C NMR spectrum (100 MHz, 25°C, CDCl3) of Chemo selective cyanosilylation of aldehydes.

OTMS

O

CNH

OTMS

O

CNH

Figure FS148. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of chemo selective cyanosilylation of aldehydes.

Figure FS149. 13C NMR spectrum (128.4 MHz, 25°C, CDCl3) of chemo selective cyanosilylation of aldehydes.

OTMS

H3CO

O

CNH

OTMS

H3CO

O

CNH

Figure FS150. 1H NMR spectrum (128.4 MHz, 25°C, CDCl3) of chemo selective cyanosilylation of aldehydes.

Figure FS151. 13C NMR spectrum (128.4 MHz, 25°C, CDCl3) of chemo selective cyanosilylation of aldehydes.

OTMS

NH

CNH

O

OTMS

NH

CNH

O

Figure FS152. 1H NMR spectrum (400MHz, 25°C, CDCl3) of sequential cyanosilylation and hydroboration of 4-acetyl benzaldehyde.

Figure FS153.11B NMR spectrum (128.4 MHz, 25°C, CDCl3) of sequential cyanosilylation and hydroboration of 4-acetyl benzaldehyde.

OTMS

O

CNH

BO

O

OTMS

O

CNH

BO

O

Figure FS154.13C NMR spectrum (100 MHz, 25°C, CDCl3) of sequential cyanosilylation and hydroboration of 4-acetyl benzaldehyde.

References:

1. A. Altomare, M. C. Burla, G. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi and G.

Polidori, J. Appl. Crystallogr. 1994, 27, 435-436.

2. G. M. Sheldrick, Acta Crystallogr. Sect. A: 2008, A64, 112-122.

3. V. L. Weidner, C. J. Barger, M. Delferro, T. L. Lohr, T. J. Marks, ACS Catal. 2017, 7, 1244.

4. S. Chen, D. Yan, M. Xue, Y. Hong, Y. Yao, Q. Shen, Org. Lett. 2017, 19, 3382.

5. W. Yohsuke, Y. Takashi, J. Org. Chem. 2011, 6, 1957-1960.

6. Y. Li, J.Wang, Y. Wu, H Zhu, P. P. Samuel, H. W. Roesky, Dalton Trans. 2013, 42, 13715–

13722.

7. D. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2011, 2, 389 – 399.

8. M. Asay, C. Jones, M. Driess, Chem. Rev. 2011, 111, 354 – 396.

OTMS

O

CNH

BO

O