CATALYSIS I . The HYDROFORMYLATION REACTION

Post on 24-Feb-2016

118 views 2 download

Tags:

description

CATALYSIS I . The HYDROFORMYLATION REACTION. THE HYDROFORMYLATION REACTION. Oldest process still in use Responsible for the production of materials from a homogeneous catalyzed reaction 100% atom recovery. THE HYDROFORMYLATION REACTION. O. R. cat. R. +. +. +. H. CO. R. H. - PowerPoint PPT Presentation

transcript

CATALYSIS I. THE HYDROFORMYLATION REACTION

THE HYDROFORMYLATION REACTION Oldest process still in use Responsible for the production of

materials from a homogeneous catalyzed reaction

100% atom recovery

THE HYDROFORMYLATION REACTION

R R H

O R

H O"normal"linear product

"iso"branched product

catH2 CO++ +

Fig. 7.1. The hydroformylation reaction

HYDROFORMYLATION THERMODYNAMICS

H2 + CH3CH=CH2 + CO CH3CH2CH2C(O)H G 63 -138 -117 (l) = -42 kJ.mol-1 H 21 -109 -238 = -150 kJ.mol-1

H2 + CH3CH=CH2 CH3CH2CH3

 G 63 -25 = -88 kJ.mol-1

H 21-105 = -126 kJ.mol-1

COBALT CATALYZED HYDROFORMYLATION REACTION

A prototype homogeneous metal catalysis

- precatalyst to an active complex- steps involving organometallic

reactions- 16 e to 18 e transition steps- possible geometries of

intermediates

STEP a

- Formation of the catalytically active species (16 e) from HCo(CO)4

- HCo(CO)4 from Co2(CO)8 + synthesis gas (CO + H2)

Reaction conditions:(200 – 300 bar, 120-170oC)

STEP aPreferred geometry of the intermediate: (based on calculations)

STEP b

binding of the alkene to the active catalyst - forms 18 e complex

STEP bTheoritical calculations indicate a slightly stable 4 (less steric hindrance). Structure 5 has the requisite coplanar geometry for Co, H, and the double bond C atoms)

STEP c1,2 alky insertion - reversible

-elimination is highly possible but

high CO partial pressure will

stabilize the 18 e- complex

STEP c

initial 16e complex18 e complexes upon CO addition

Step d

CO insertion (1,2 alkyl migration)

STEP d

18e 16e

STEP eoxidative addition (H2) –reductive elimination (product) sequence.

STEP e

8. Hydroformylation A comment about metal-ligand ratio

Consider the following exercise. The catalytically active complex is involved in the following equilibrium: 

L + HM(CO) LHM(L) + CO The selective and fast catalyst species we want is HM(L) and we have determined that at a certain pressure we need a twenty-fold excess of L in order to have 95 % of M in the M(L) state. The concentration of M = 10-3 molar. Suppose we want to reduce the concentration of M to 10-5. What should we do with the concentration of L (at constant pressure of CO). What ratio L/M should one choose? What happens if the ratio is kept at 20?(calculate the equilibrium constant from the first example and then calculate the required concentration of L at M = 10-5 molar)

HYDROFORMYLATIONRHODIUM CATALYSTS, MONODENTATES

tppms "bulky" phosphite UCC ligand

O

OP O

OP

OO

R

R

R

P

SO3Na

P

tpp

Hydroformylation Hydroformylation with rhodium phosphite/phosphines

O

O

+

Results of rhodium catalysed hydroformylation with various ligands

L4RhH

Linearity 40-96% depending on L

L4RhH8% linear if L=

62% linear if L=

P(OEt)3

P(OCH2CF3)3

O

L4RhH

BASF, L=PPh3

700 bar, 120 °C

L= bulky phosphite,

10 bar, 80 °C

L4RhH<25 m/m/h

4000 m/m/h

L= PPh3

L= bulky phosphite

HydroformylationRhodium catalysts for propene

Rh/triphenylphosphine: linearity 60 to 96 %

Union Carbide Corporation, now Dow Chemicals 30 bar, at 120 °C, at high phosphine concentrations linearity 92%. 300 mol.mol-1(Rh).h-1.

Low ligand concentrations, 10-20 mM, 1 mM Rh10-20 bar and 90 °Clow linearities (70%), 5-10,000 mol.mol-1(Rh).h-1.

Rhodium TPP mechanism 1

3c

2ae

3t

12ee

HRh

CO

COL

LHRh

L

COOC

LH

Rh

COL

L

L

HRh

COLL

HRh

LLOC

COCOL

8.3. Rhodium tpp mechanism, dimers

3c

2ae

3t

19

2ee

HRh

CO

COL

LRhCOL

LRh

COL

CO

C

CO

OHRh

L

COOC

LH

Rh

COL

L

L

H

Rh

COLL

H

Rh

LLOC

COCOL

H2

Positive effect of raising H2 pressure

8.3. Rhodium cycle

8ee 7c

6ae

4ee

5c

3c

2ae

5t

4ae

3t

1

8ae 7t

6ee

2ee

HRh

CO

COL

L

CRh

CO

LL

O CH2

CH3

CH

O CH2

CH3

CRh

L

L

O CH2

CH3

OCOC

HRh

L

COOC

LH

Rh

COL

L

L

HRh

COLL

HRh

LOC

L

CH2Rh

COLL

CH3

CH2

Rh

COCO

L

L

CH3

HRh

LLOC

CH2

Rh

LCO

OC

L

CH3

CO

C2H4

COL

CO

H2

CO

8. HydroformylationKinetics, overall (M=RhL3, L=any ligand, Ol=alkene)

F

F

E

D

C

B

B product

G

F

E

D

C

BA

k7

k6

k5

k4

k3

k2

k-6

k-5

k-4

k-3

k-2

k-1

k1

MH + HC(O)R MC(O)R + H2

MC(O)R(CO)MC(O)R + CO

MC(O)RMR(CO)

MR(CO)MR + CO

MRMH(Ol)

MH(Ol)MH + Ol

MH + COMH(CO)

Scheme 6.1. Hydroformylation

HydroformylationKinetics, resting state, type I

CO

Rh

CO

COL

L

RCH2

CH2ORh

H

CO

L

L

Rh

H

CO

COL

L

H(O)CC2H4R

H2

2 CO

CO

CH2 CHR

CH2

CHR

- CO

rds, type I

resting state

Rh

CO

L

L

CH2CH2

R

8. HydroformylationKinetics, rate equation, type I

equation d'Oro v = k [C3H6]0.54[PPh3]-0.7[Rh]1

(conditions 90-110°C, 1-25 bar CO, 1-45 bar H2, PPh3/Rh ratio 300:1 to 7:1)

v = k1k2k3[Rh][C3H6]

k1k2[C3H6] + k1(k-2 + k3) + k-1(k-2 + k3)[L]

v = kA [Rh] [C3H6]

kB + kC[CO]“type I kinetics”

8.2.2. HydroformylationKinetics, resting state, type II

CO

Rh

CO

L

L

RCH2

CH2ORh

H

CO

L

L

Rh

H

CO

COL

L

H(O)CC2H4R

H2

CO

CO

CH2 CHR

CH2

CHR

- CO

rds, type II

resting state

Rh

CO

OCL

L

CH2CH2

R

Rh

CO

COL

L

RCH2

CH2O

CO

8. HydroformylationKinetics, rate equation, type II

°conditions:75 CH2 33-126 barCO 40-170 bar

[H2] [RhH(CO)4] [CO]

rate expression Marko' v = k

rate equation Garland v = k [RC(O)Rh(CO)4]1[CO]-1.1[H2]1[3,3-DMB]0.1

v = k-6k7[Rh][H2]

k-6 + k6[CO] + k7[H2]

“type II kinetics”

8.2.2. Rhodium tpp cycle, type I kineticselectronic effects

][]][[)(

LBRhalkeneAItypeRate

8ee

7c

6ae

4ee

5c

3c

2ae

5t

4ae

3t

8ae

7t

6ee

2ee

CH

O CH2

CH3

CRh

L

L

O CH2

CH3

OCOC

C2H4

CO

CO

H2

CO

migration

migration

H

Rh

CO

PPh3PPh3

H

Rh

CO

COPPh3

H

Rh

PPh3

COPPh3

H

Rh

PPh3

COOC

H

Rh

CO

COPPh3

PPh3H

Rh

CO

PPh3PPh3

PPh3H

Rh

PPh3

COOC

PPh3

ee ae

linear aldehyde mixed aldehydes

*

8.4. Rhodium complex isomers for regioselective propene hf

8.4. Rhodium complex isomers; regioselectivity

4ae 4a

3t 3c10c 10t

1 2ee 2ae

linear aldehyde mixed aldehydes

4e 4ee

HRh

PPh3OC

OCH

Rh

PPh3OC

PPh3H

Rh

COOC

PPh3H

RhCO

PPh3

PPh3

HRhPPh3

COOC

PPh3H

RhCO

PPh3PPh3

PPh3H

RhCO

COPPh3

PPh3

HRhPPh3

COOC

HRhPPh3

COPPh3

HRhCO

COPPh3

HRhCO

PPh3PPh3

PPh3

8. Steric effects for regioselective hfTable 8.1. Hydroformylation of methyl-substituted 1-alkenes Alkene Rate, mol.mol-1.h-1 Linearity, %

1-pentene 11,300 78.44-Me-1-pentene 9,300 78.04,4-Me2-1-pentene 5,300 85.03-Me-1-pentene 9,600 91.03,3-Me2-1-pentene 7,600 99.0 Conditions: 90 °C, p(CO/H2) = 20 bar, [Rh]=0.5 mM, [PPh3]=5 mM, [alkene]=0.5 M,initial rates at <20% conversion, no isomerization was observed [18].

8. HydroformylationRhodium LPO stripping

reactor

propene, CO, H2

propene, CO, H2

de-mister

cooler

separator

off-gas

product

bleedcatalyst

regeneration

8.5. HydroformylationRhodium LPO liquid

catalyst recycle

propene, CO, H2

propene, CO, H2

reactor

cooler

separator

off-gas

product

bleedcatalyst

regeneration

8.6. HydroformylationRhodium tppts

Ruhrchemie-Rhone Poulenc 1986Propene and 1-buteneSame chemistry as tpp

P

SO3NaNaO3S

SO3Na

8.7. Hydroformylation Ruhrchemie-Rhône Poulenc process

aldehyde

alkene

syngas

water

syngas

exhaust

steam

8.8. Hydroformylation one-phase, two phase

SO3Na

PPh2

tppms

PSO3Na

DPBS

NMP,org.,cat.

water

org.,NMP

NMP,water,cat

NMP,cat

waterextractions

extractions

dist.

NMP

product

alkene

8.7. Hydroformylation Summary of hydroformylation catalysts

Catalyst Co Co/phosphine Rh/phosphine Pd/phosphine Pressure, bar 200 70 30 60Temperature, °C 140 170 120 100

Substrate C3 C3 C3,4

internal C10+ terminal allProduct aldehyde alcohol aldehyde aldehydeLinearity, % 60‑70 70‑90 70‑95 70-95Alkane by‑product, %2 10‑15 0 ?Corrosion + + ‑ ?Metal deposition + + ‑ -Heavy ends + + ‑ ?Catalyst costs (Co=1) 1 10 1000 500

8. HydroformylationRhodium catalyst isomers for propene

H

Rh

CO

PPh3PPh3

H

Rh

CO

COPPh3

H

Rh

PPh3

COPPh3

H

Rh

PPh3

COOC

H

Rh

CO

COPPh3

PPh3H

Rh

CO

PPh3PPh3

PPh3H

Rh

PPh3

COOC

PPh3

ee ae

linear aldehyde mixed aldehydes

*

8. Hydroformylation Mechanistic Scheme; Why Bidentates

CO

rearrangement

Rh

CO

COL

L

RCH2

CH2O

Rh

CO

COL

L

Rh

H

CO

L

L

Rh

H

CO

COL

L

Rh

H

CO

LL

L

CH2CH2

R

CO L

H(O)CC2H4R

H2

CO

CO

CO

CH2 CHR

CH2

CHR

- CO

8. Hydroformylation Novel bidentates

Eastman, 1987 Union Carbide 1997

general formula of diphosphite"BISBI"

OP(OR)2

OP(OR)2

tBu

tBu

PPh2

PPh2

8.9. Table 8.1. Hydroformylation; Novel bidentatesLigand Bite angle

Rate m.m–1.h–1

Ratio l:b

12 126 2550 2.6–4.3BISBI, 11 113/120 3650 25

13 107 3200 4.4–12DIOP [also 56] 102 3250 4.0–8.5dppf [also 33] 99 3800 3.6–5

dppp 91 600 0.8–2.6dppe 85   2.1PPh3

a   6000 2.4

PPh2

PPh2

PPh2

PPh2

PPh2PPh2

11 12 13

8. HydroformylationRhodium diphosphine catalysts

Ph2P PPh2

OO

Ph2P PPh2 Ph2P PPh2Ph2P PPh2 PPh2PPh2

Fe

BISBI DIOP dppf dppe

Bite angle 113 107 102 99 85

l/b ratio 66 12 8.5 2.4

Devon, 1987, Casey, 1992 13 4-5Consiglio, 1973 Unruh, 1982

8. Hydroformylation Novel bidentates 2

PAr2

PAr2

SO3Na

SO3Na

NaO3S

NaO3S

BINAS Hoechst/celanese Herrmann

Ar =

SO3Na

8. Hydroformylation Novel bidentates 3

O

PPh2PPh2

(patent to Shell, 1987)

Linear/ branched = 10

8.10. Hydroformylation Bite angles in Xantphos ligands

DPEphos (35) 102° Benzoxantphos (34) 120.6° R = H, Nixantphos (32) 114.1° R = Bn, Benzylnixantphos (33) 114.2

Isopropxantphos (31) 113.2° Xantphos (30) 111.4° Thixantphos (29) 109.6°

Sixantphos (28) 108.5° Phosxantphos (27) 107.9°Homoxantphos (26) 102.0°

OPPh2 PPh2

O

S

PPh2 PPh2

O

PPh2 PPh2

O

Si

PPh2 PPh2

O

PPh2 PPh2

O

PPh2 PPh2

O

P

PPh2 PPh2

O

NR

PPh2 PPh2

O

PPh2 PPh2

8. Hydroformylation Geometry of bidentate Xantphos/rhodium

Fig. 6.15. Bis-equatorial coordination of Xantphos

H

RhC

CP

P O

O

O

H

RhPh3P

CP

P

O

O

Table 8.2. Hydroformylation Bite angle effects in Xantphos ligands 

Hydroformylation of octene-1 (1.2 M) 

H

RhOC

C

PR2

PR2

O

O X R =

 X n l/b H, H 102 7PPh 105 18SiMe2 109 34S 111 41C=CMe2 112 50

8. Hydroformylation Bite angle effects, steric hindrance

4ae

RH

Rh

PP

OC

4ee

H

Rh

COP

PR

RRhP

P

COH

HRh

P

P

CO

R

steric hindrance

8.3. Hydroformylationdppf Electronic Ligand Effect

for R see Table 6.1.

Fe

R

R

P

R

Rh

R

P

Fig. 6.11. Ferrocene-derived diphosphine

Hydroformylation with substituted aryl phosphines Fe[C5H4P(C6H4R)2]2 Ar=

i-value (Ar) linearity relative rate isomerization % % 2-hexene Ph 4.3 84 7.2 4 p-Cl-C6H4 5.6 87 9.3 5 m-F-C6H4 6.0 89 13.7 5 p-CF3-C6H4 6.3 92 13.8 6 (conditions 110°C, 8 bar CO/H2 = 1:1, 1-hexene, (Unruh and Christenson [14]),

8. Hydroformylation & NMR Electronic effects in Xantphos ligands

 X = -Rh JH-Rh JP-Rh JP-H rate isom % l/b

H

RhOC

C

PR2

PR2

O

O S XR =

 CF3 850 4.4 135 3.6 158 7 89 Cl 840 5.9 132 8.4 68 7 68 H 6.6 128 15 107 5 50 F 835 6.3 131 11 75 6 52 Me 831 7.3 126 18 78 5 44 MeO 825 7.3 125 21 45 6 37

NMe2 814 8.8 122 28 29 5 45

8.12. Hydroformylation Electronic effects in Xantphos ligands

H

RhOC

C

PR2

PR2

O

O S XR =

 IR spectra of complexes

RhH(ligand)CO (ligand = 36–41, 29)

1

23

4

36

37

38

29

39

40

41

2100 2000 1900 cm-1

8.12. HydroformylationIR of RhH(xant)(CO)2

IR frequencies of complexes RhH(diphosphine)(CO)2

Substituent R i-Value CO eq-ap (cm–1) CO eq-eq (cm–1)

N(CH3)2 1.7 2027, 1960 (50%) 1983, 1935 (50%)

OCH3 3.4 2034, 1966 1990, 1942

H 4.3 2037, 1972 1994, 1946

F 5.0 2041, 1975 1997, 1950

Cl 5.6 2042, 1977 1999, 1952

CF3 6.4 2046, 1982 (90%) 2004, 1957 (10%)

CO-eq-eqCO-eq-ap

Ar = R

S

O P

P

H

RhCO

COAr2

Ar2

H

RhOC

COP

PO S

Ar2

Ar2

8.13. Hydroformylation Linearity and isomerisation

RhLn

RhLn

Linear aldehyde

Branchedaldehyde

CO, H2

CO, H2

LnRhH

8.14. Hydroformylation Internal alkenes Table 8.4.

OPP

OPP

OO

31 32

Ligand Substrate l:b ratiob % linear ald

t.o.fc.

PPh3 2-octene 0.9 46 39

31   9.5 90 65

32   9.2 90 112

PPh3 4-octene 0.3 23 2

31   6.1 86 15

32   4.4 81 20

120 °C 2 bar

Table 8.5. Hydroformylation rhodium monophosphite

Ligand R3PR=

‑value q‑value linearity of product %

n-Bu 4 132 71n-BuO 20 109 81Ph 13 145 82PhO 29 128 862,6-Me2C6H3O 28 190 474-Cl-C6H4O 33 128 93CF3CH2O 39 115 96(CF3)2CHO 51 135 55

8.15. Hydroformylation Hydroformylation with rhodium bulky phosphite

O POO

Bulky phosphite, q = 170°, and its rhodium hydride complex

Rh

H

CO

LCOCO

= L

8. Hydroformylation Novel bidentates

Eastman, 1987 Union Carbide 1997

general formula of diphosphite "BISBI"

OP(OR)2

OP(OR)2

tBu

tBu

PPh2

PPh2

8.18. Hydroformylation Bidentate phosphites

O

O

P

P

O

O

O

O

tBu

tBu

tBu

tButBu tBu

tButBu

OO

P(OAr)2

P(OAr)2

CO2Me

CO2Me

42

Ar =

41

8.17. Hydroformylation, diphosphites

H

RhC

C

O

O tBu

tBu

P(OR)2O

P(OR)2

O

H

RhC

PP

OC

OH

RhC

CP

PO

O

O

O

O

Oa b c

8.17. Hydroformylation Structure, NMR spectroscopy

O

Me

N

P COCO

H

P

Rh

MePh

PhPh

PhPh

Mortreux

Donor, apical; 4 atoms in bridge, yet a-e

8. Hydroformylation Structures of dimers

ba

P Rh

CO

P

Rh

O

OP

CO

P

PRh

PRh

P

P

O

O

orange red

P Rh

H

PCO

CO2 + H2

P Rh

CO

P

Rh

O

OP

CO

P + 2 CO

8. Asymmetric Hydroformylation

CHOCHO

+CO/H2

[Rh]

O

OP

O O

O

OP

RRBu

BuBu

Bu

R

RR

R

2 2

2

11

2

t

tt

t

UC-P2*

OO

OP O

O

OP

R3SiSiR3

SiR3 R3Si

OO

OP O

O

OP

R3SiSiR3

SiR3 R3Si

8a (R = Me)8b (R = Et)8c (R = tert-Bu Me2)

9a (R = Me)9b (R = Et)9c (R = tert-Bu Me2)

8.21. Asymmetric HydroformylationAtropisomerism

O O

POO

P

8.22. Asymmetric HydroformylationAtropisomerism, bisnaphthol, match-mismatch effects

OO

OP O

O

OP

R3SiSiR3

SiR3 R3Si

OO

OP O

O

OP

R3SiSiR3

SiR3 R3Si

44a (R = Me)44b (R = Et)44c (R = tert-Bu Me2)

45a (R = Me)45b (R = Et)45c (R = tert-Bu Me2)

8.23. Asymmetric Hydroformylationmatch-mismatch effectsBINAPHOS

O P O

O

PPh2

O P O

O

PPh2

PPh2

O P O

O

O P O

O

P

Me

Me

ClMe

PPh2Me

Cl

O P O

O

46 (R,S)-BINAPHOS

48(R)

47 (R,S)

50 (R)

2

49a (S,R)49b (R,R)

8.23. Asymmetric Hydroformylationmatch-mismatch effectsBINAPHOS

Ligand % e.e.

46 (S,R) 94 (S)

46 (R,R) 25 (R)

47 (R,S) 85 (R)

48 (R,--) 83 (R)

49 (S,R) 94 (S)

49 (R,R) 16 (R)

50 (--,R) 69 (S)

O P O

O

PPh2

O P O

O

PPh2

PPh2

O P O

O

O P O

O

P

Me

Me

ClMe

PPh2Me

Cl

O P O

O

46 (R,S)-BINAPHOS

48(R)

47 (R,S)

50 (R)

2

49a (S,R)49b (R,R)

8.23. Asymmetric Hydroformylation BINAPHOS structure, ae!

O P O

O

RhCO

CO

H

PPh2

JP-H

JP-Rh

JP-P

Exam IIIMarch 7, Wed 6-7:30

Comprehensive Final Exam, March 21 Wed. 7:30 -9:30 CTC 102

Write solubility product expressions for the followingcompounds.Ba3(PO4)2 PbI2FePO4 Ag2S

Calculating Ksp from solubility dataThe solubility of silver dichromate, Ag2Cr2O7, (molar mass = 431.8 g/mol) in water is 1.59 g/L. Calculate Ksp.

Calculating KspThe pH of a saturated solution of magnesium hydroxide (milk of magnesia) was found to be 10.52. From this, find Ksp for magnesium hydroxide.

Solubility from KspWhat is the solubility of magnesium hydroxide in a solution buffered at pH 8.80? Ksp Mg(OH)2 = 6.3 x 10-10

Common ionWhat is the solubility (in grams per liter) of strontium sulfate, SrSO4 (molar mass = 183.69), in 0.23 M sodium sulfate, Na2SO4? Ksp = 3.2 x 10-7

A 0.150-L solution of 2.4 x 10-5M MgCl2 is mixed with 0.050 L of 4.0 x10-3 M NaOH. Calculate Qc for the dissolution of Mg(OH)2. No precipitate has formed. Is the solution supersaturated, saturated, or unsaturated? Ksp Mg(OH)2 = 5.2 x 10-24

PRECIPITATE?