Change detection in monitoring time series - Changes...

Post on 12-Mar-2018

217 views 3 download

transcript

1Challenge the future

Change detection in monitoring time series

Thom BogaardDelft University of Technology

Formose - Changes Workshop

2Challenge the future

Change detection in monitoring series

Thom BogaardDelft University of Technology

Content

What is a time series? What are we monitoring? What is a change? How can we detect the time series changes?

Example for streams/rivers Example for landslides

3Challenge the future

time series is a sequence of data points, measured typically at successive points in time spaced at uniform time intervals

Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data

What is a time series?

4Challenge the future

Observation interval = 5 daysObservation frequency = 6 times / month

Plot of hydrograph

0 72 144 216 288 360 432 504 576 648 720 792

Time interval (5 days)

62

63

64

65

66

67

68

Gro

und

wat

er le

vel (

m)

Characteristics of time series

5Challenge the future

Mean: central tendency

h n1 = h i

n

1=i

Characteristics of time series

Variance: variation around mean

)h - h( 1-n

1 = s2

i

n

1=i

2

0 12 24 36 48 60

Time interval (15 days)

38

39

40

41

42

43

44

45

Gro

undw

ater

leve

l (m

)

6Challenge the future

Time scale effect on time series

7Challenge the future

Time and spatial scale effect on discharge time series

8Challenge the future

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

Distance (km)

r(d) Daily Rainfall Monthly rainfall

Scale effect on rainfall time seriesExample of 9 rain gauges Luxembourg

9Challenge the future

Decompose a time series

Time series

Trend

Periodicity

Catastrophic event

Noise (random)

10Challenge the future

How to test periodicity?Serial correlation

Random

Autoregressive, Markov process

Periodicity

11Challenge the future

How to test periodicity?Serial correlation and confidence limits

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Time lag (15 days)

Cor

relo

gram

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Time lag (15 days)

Cor

relo

gram

Lower limit Correlation coefficient Upper limit

12Challenge the future

Correlogram of seasonal time series

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 72 144 216 288 360 432 504 576 648 720 792

Time (5 days)

Seas

onal

var

iatio

ns (m

)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 36 72 108 144 180

Time lag (5 dyas)

Cor

relo

gram

Lower limit Correlogram Upper limit

13Challenge the future

Floods: discharge, water level height, bed topography, …

What are we monitoring in natural hazards?

z

v

14Challenge the future

What are we monitoring in natural hazards?

15Challenge the future

Landslide: displacement, groundwater level, precipitation

What are we monitoring in natural hazards?

16Challenge the future

What is the difference between a cause and a trigger?

17Challenge the future

What is the difference between a cause and a trigger?

18Challenge the future

How to detect a change?

Methods

Visual inspection Double mass (residual mass) Statistics Physical modelling

19Challenge the future

… data quality and extremesHow to detect a change?

20Challenge the future

How to detect a change?… data quality and extremes

21Challenge the future

How to detect a change?… data quality and extremes

22Challenge the future

How to detect a change?… data quality and extremes

23Challenge the future

Patterns of movement in reactivated landslidesMassey ey al, 2013 Engineering Geology

Visual inspectionHow to detect a change?

24Challenge the future

Patterns of movement in reactivated landslidesMassey ey al, 2013 Engineering Geology

Visual inspectionHow to detect a change?

25Challenge the future

How to detect a change?

Double mass plot

Double mass analysis

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 20000 40000 60000 80000

Cumulative Average Discharge (n-1 stations)C

umul

ativ

e di

scha

rge

( 1 s

tatio

n)

Plot cumulative observation time series against another (averaged) cumulative time series

Double Mass curve

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000Station 1

Stat

ion

2

26Challenge the future

How to detect a change?

Double mass plot

27Challenge the future

Characteristics of Time SeriesStationarity

• Stationary: probability distribution doesn’t change with time

• First-order stationary: mean is a constant• Second-order stationary: mean is a constant and

covariance is only a function of time lag, not actual time• Non-stationary in the mean: presence of a trend or

periodicity

How to detect a change?

28Challenge the future

A stationary time series

0 12 24 36 48 60 72 84 96 108 120

Time interval (15 days)

-300

-280

-260

-240

-220

-200

Gro

undw

ater

leve

l (cm

)

Characteristics of Time Series

29Challenge the future

Non-stationary time series with a trend

0 12 24 36 48 60 72 84 96 108 120

Time interval (15 days)

2

3

4

5

6

7

8

Gro

undw

ater

leve

l (m

)

Groundwater level Linear trend

Characteristics of Time Series

30Challenge the future

Non-stationary time series with periodic changes

0 12 24 36 48 60 72 84 96 108 120

Time interval (15 days)

-3

-2

-1

0

1

2

3

Gro

undw

ater

leve

l (m

)

Groundwater level Seasonal trend

Characteristics of Time Series

31Challenge the future

0 12 24 36 48 60 72 84 96 108 120

Time interval (15 days)

36

3738394041424344

45

Gro

undw

ater

leve

l (m

)

Groundwater level Step trend

µ1 µ2

• Step trend

tn1>t121t + ) - ( + = h

Detection of a trend

32Challenge the future

• Hypothesis testH0 µ1 = µ2Ha µ1 µ2

t statistic

• t test resultGiven α(5%), find tα/2(n-2) from Student tableIf t > tα/2(n-2) accept Ha, step trend is significantIf t tα/2(n-2) accept H0, step trend is not significant

2)-t(n n/s2|x-x|=t

p

21

Detection of a step trend

33Challenge the future

t0.025(118) = 1.96

0 12 24 36 48 60 72 84 96 108 120

Time interval (15 days)

36373839404142434445

Gro

undw

ater

leve

l (m

)

Groundwater level Step trend

9.89= 1201.1/*2

|40.0-42.0|=t

0.42h 601 = h i

60

1=i1 0.40h

601 = h i

120

61=i2

1.1] )0.40 - h( + )0.42 - h( [ 2-120

1 = s 2i

120

16=i

2i

60

1=i

2p

Detection of a step trend

34Challenge the future

0 12 24 36 48 60 72 84 96 108 120

Time interval (15 days)

22

24

26

28

30

32

34

Gro

undw

ater

leve

l (m

)

Groundwater level Linear trend

Detection of a linear trend

t10t + t + = htb + b = h 10t

35Challenge the future

• Hypothesis testH0 β1 = 0Ha β1 0

• t statistic

• t test resultGiven α(5%), find tα/2(n-2) from Student tableIf t > tα/2(n-2) accept Ha, linear trend is significantIf t tα/2(n-2) accept H0, linear trend is not significant

2)-t(n 1)-1)(n+n(n/s12

|b|=tl

1

Detection of a linear trend

36Challenge the future

Example of detecting a linear trend

0 12 24 36 48 60 72 84 96 108 120

Time interval (15 days)

22

24

26

28

30

32

34

Gro

undw

ater

leve

l (m

)

Groundwater level Linear trend

05.0)t - (t

)t - )(th - h( = b

2n

1=t

t

n

1=t1

0.32tb - h = b 10

Detection of a linear trend

37Challenge the future

t0.025(118) = 1.96

0 12 24 36 48 60 72 84 96 108 120

Time interval (15 days)

22

24

26

28

30

32

34G

roun

dwat

er le

vel (

m)

Groundwater level Linear trend

18.97= 119*121*1201.0/*12

|-0.05|=t

0.1)tb - b - h( 2-n

1 = s2

10t

n

1=t

2l

Detection of a linear trend

Example of detecting a linear trend

38Challenge the future

Characteristics of a harmonic function

0 2 4 6 8 10 12 14 16 18 20 22 24

T ime (month)

-3

-2

-1

0

1

2

3

Har

mo

nic

func

tion

Hramonic seriesA=2 amplitude

A0=0 base level

0= 0 initial phase T=1/f =12 period

)tfin(2s A + A = h 00t

Detection of a periodic trend

39Challenge the future

0 12 24 36 48 60 72 84 96 108 120Time interval (15 days)

44

46

48

50

52

54

56

58

Gro

undw

ater

leve

l (m

) Measurements Harmonic se ries

Detection of a periodic trend

)12

t2(sin0.53+)12

t2(cos0.86+)24

t2(sin1.68+)24

t2(cos2.23+49.97=ht

Fit of harmonic series with 2 harmonics

40Challenge the future

Shifts in the Mean

1. Student’s t-test2. Bayesian analysis 3. Mann–Whitney U-test4. Wilcoxon rank sum5. Pettitt test 6. Mann-Kendall test7. Lepage test8. Standard normal homogeneity test

9. Regression-based approach10. CUSUM test11. Oerlemans method12. Signal-to-noise ratio13. Intervention analysis14. Markov chain Monte Carlo15. Lanzante method

41Challenge the future

Shifts in the Variance1. Downton-Katz test

Shifts in the Spectrum1. Nikiforov method

Shifts in the System1. Principal component analysis2. Average standard deviates3. Fisher information4. Vector autoregressive method

42Challenge the future

Example: Min Tu – Assessment of the effects of climate variability and land use change on the hydrology of the Meuse river basin (2006)

43Challenge the future

Example: Min Tu – Assessment of the effects of climate variability and land use change on the hydrology of the Meuse river basin (2006)

44Challenge the future

Example: Min Tu – Assessment of the effects of climate variability and land use change on the hydrology of the Meuse river basin (2006)

45Challenge the future

Example: Min Tu – Assessment of the effects of climate variability and land use change on the hydrology of the Meuse river basin (2006)

46Challenge the future

Example: Min Tu – Assessment of the effects of climate variability and land use change on the hydrology of the Meuse river basin (2006)

47Challenge the future

Change detection in monitoring time series

Thom BogaardDelft University of Technology

Summary

What is a time series? What are we monitoring? What is a change?

• Step, linear, periodicity, etc

How can we detect the time series changes? • Visual, double mass, statistical, ….