Chapter 10. Forest Biomass-Based energy...213 chAPTeR 10. Forest Biomass-Based Energy Janaki R. R....

Post on 08-Oct-2020

0 views 0 download

transcript

213chAPTeR 10. Forest Biomass-Based Energy

JanakiR.R.Alavalapati,PankajLal, AndresSusaeta,RobertC.Abt,andDavidN.Wear1

key FiNDiNGS

•Harvestingwoodybiomassforuseasbioenergyisprojectedtorangefrom170millionto336milliongreentonsby2050,anincreaseof54to113percentovercurrentlevels.

•Consumptionprojectionsforforestbiomass-basedenergy,whicharebasedonEnergyInformationAdministrationprojections,haveahighlevelofuncertaintygiventheinterplaybetweenpublicpoliciesandthesupplyandinvestmentdecisionsofforestlandowners.

• Itisunlikelythatthebiomassrequirementforenergywouldbemetthroughharvestresiduesandurbanwoodwastealone.Asconsumptionincreases,harvestedtimber(especiallypinepulpwood)wouldquicklybecomethepreferredfeedstock.

•Theemergenceofanewwoodybiomass-basedenergymarketwouldpotentiallyleadtopriceincreasesformerchantabletimber,resultinginincreasedreturnsforforestlandowners.

•Whilewoodybiomassharvestisexpectedtoincreasewithhigherprices,forestinventorieswouldnotnecessarilydeclinebecauseofincreasedplantationsoffastgrowingspecies,afforestationofagriculturalorpasturelands,andintensivemanagementofforestland.

•Becauseitwouldallowmoreoutputperacreofforestlandanddampenpotentialpriceincreases,forestproductivityisakeyvariableinmarketfutures.

•Theimpactsthatincreaseduseofwoodybiomassforenergywouldhaveontheforestproductsindustrycouldbemitigatedbyimprovedproductivitythroughforestmanagementand/orbyincreasedoutputfromcurrentlyunmanagedforests.

1JanakiR.R.AlavalapatiisaProfessorandDepartmentHeadofForestResourcesandEnvironmentalConservation,VirginiaTech,Blacksburg,VA24061.PankajLalisanAssistantProfessor,DepartmentofEarthandEnvironmentalStudies,MontclairStateUniversity,Montclair,NJ07043.AndresSusaetaisaPostdoctoralScholar,DepartmentofForestResourcesandEnvironmentalConservation,VirginiaTech,Blacksburg,VA24061.RobertC.AbtisaProfessor,DepartmentofForestryandEnvironmentalResources,NorthCarolinaStateUniversity,Raleigh,NC27695.DavidN.WearistheProjectLeader,CenterforIntegratedForestScience,SouthernResearchStation,U.S.DepartmentofAgricultureForestService,Raleigh,NC27695.

• Pricevolatilityassociatedwithincreaseduseofwoodybiomassforenergyisexpectedtobehigherforpulpwoodthanforsawtimber.

•Theimpactsofwood-basedenergymarketstendtobelowerforsawtimberindustries,althoughmarketsforallproductswouldbeaffectedatthehighestlevelsofprojecteddemand.

•Differenttypesofwood-basedenergyconversiontechnologiesoccupydifferentplacesonthecostfeasibilityspectrum.Combinedheatandpower,co-firingforelectricity,andpellettechnologiesarecommerciallyviableandarealreadyestablishedintheSouth.Biochemicalandthermochemicaltechnologiesusedtoproduceliquidfuelsfromwoodybiomassarenotyetcommerciallyviable.

•Currentresearchdoesnotsuggestwhichwoodyspeciesandwhattraitswouldlikelybemostsuccessfulforenergyproduction.Thefutureofconversiontechnologiesisuncertain.

• Intheabsenceofgovernmentsupport,research,pilotprojects,andincentivesforproduction,woodybioenergymarketsareunlikelytogrowsubstantially.

•Underahighdemandscenarioforbioenergy,theresultingintensityofwoodybiomassharvestscouldhavedeleteriouseffectsonstandproductivity,biodiversity,soilfertility,andwaterquality.

•Althoughresearchprovidessomeguidelinesforthedesignofmanagementtoprotectvariousforestecosystemservices,forestsustainabilitybenchmarksarenotwelldefinedforahighbioenergydemandfutureandexistingcertificationsystemsmayneedmodificationstoaddressmultipleresourcevalues.

iNTRoDucTioN

TheUnitedStatesisthelargestconsumerofpetroleumproducts,consumingabout19.5millionbarrelsperdayin2008(EnergyInformationAdministration2009),withasignificantportionimportedfrompoliticallyunstableregionsoftheworld.Thisrelianceonimportedfossilfuels,coupledwiththeirassociatedgreenhousegasemissions,hasledtoeconomic,socialandenvironmentalconcerns.Bioenergymayoffsetfossilfueluse,diversifyenergysources,reduceemissions,andprovidesocioeconomicbenefitsintheform

Chapter 10. Forest Biomass-Based energy

214The Southern Forest Futures Project

ofadditionalincomeandnewjobs.BioenergyfromwoodybiomasscouldcontributebyincreasingU.S.renewableenergyresources,reducingcompetitionbetweenagriculturalcropsdestinedforfoodandthoseforfuelproduction(Hillandothers2006),andperhapsimprovingtheconditionofsomeforests.Someanalysts,forexampletheManometCenterofConservationSciences(2010)intheiranalysisofwood-basedbioenergyinMassachusettsraisedoubtsaboutthegreenhousegasmitigationpotentialofforestbioenergy.Others,e.g.,Lucier(2010)andO’Laughlin(2010),challengethesefindings.IntheSouth,somestudies,e.g.,Dwivediandothers(2011),indicatethatsouthernpinebasedenergycouldreducegreenhousegasemissionsascomparedtousingfossilfuels.

Althoughhistoricallylimitedtoresiduesfromtheproductionofwoodproducts,biomasscouldbesourcedfromloggingresidues,standsdamagedbynaturaldisturbances(suchaswildfire,pestoutbreaks,andhurricanes),small-diametertreesthinnedfromplantationsandotherforests,andenergycropssuchaseucalyptusandpoplar;thesesourceswouldlikelybetappedaswoodybioenergymarketsbecomecompetitive.Athighenoughprices,evenmerchantabletimbercouldbedivertedtobioenergyuses.Hughes(2000)suggeststhatthecombinationofforestbioenergyplantationsandcontinueduseofwoodresiduesfromforestproductindustriescouldsupply7to20percentoftheU.S.electricitygenerationinthefuture.

Manypineplantationsestablishedtosupplypulpwoodforpaperandengineeredwoodproductsareoverstockedandthereforesusceptibletowildfiresandpestattacks(GanandMayfield2007a).Forexample,nearlyhalfofover1.1millionacresofnearlypurepinestandsareatriskfromsouthernpinebeetleinOklahoma(OklahomaDepartmentofAgricultureFoodAndForestry2008).Wood-basedbioenergymarketscouldincreasethinningandremovals,therebyreducingtheserisks(Belangerandothers1993,GanandMayfield2007a,NearyandZieroth2007,Speight1997).Schmidtandothers(2002)estimatedthat2.7billiondrytonsofforestbiomassneedstoberemovedthroughforestfuelreductiontreatmentsintheSouth,about20milliondrytonsannually.Furthermore,wood-basedbioenergymarketswouldimproveprofitabilityforlandownersintheSouth(Nesbitandothers2011,Susaetaandothers2009).Furthermore,southernersappearwillingtopaymoreforcleanersourcesofenergysuchaswoodbasedbiofuels(Susaetaandothers2010).

Federalpoliciessuchasthe2002FarmBill,2005EnergyPolicyAct,2007EnergyIndependenceSecurityAct,and2008FarmBillhavespecificallyencouragedtheproductionofcellulosicbiofuelssuchasthoseproducedfromwood,rangingfromgrantsandloanstotheestablishmentofrenewablefuelstandards(15.5billiongallonsin2012,and

36billiongallonsby2022ofwhich21billiongallonsmustbecellulosic).Federallawprovidesdifferingdefinitionsofacceptableforestbiomassforbioenergy.Forexample,underthe2007EnergyIndependenceSecurityActbiomassfrompubliclands,municipalsolidwaste,plantationsestablishedaftertheenactmentoftheAct,‘oldgrowth’or‘mature’forests,andmostotherwoodybiomass(exceptforslashandpre-commercialthinning)isexcludedfromprivateandnon-industrialforests(NIPFs)landowners.The2008FarmBillontheotherhandislessrestrictive,asitallowsforbiomassderivedfromFederallandsandotherforests(i.e.,nottreeplantations)asbiofuels.TheAmericanCleanEnergyandSecurityActof2009(H.R.2454),aspassedbytheHouseofRepresentatives,soughttocreateabroadeneduniversaldefinitionofrenewablebiomassthatappliestotheRenewableFuelStandard,andanationalRenewableElectricityStandard.Wefollowedanon-restrictivedefinitionofbiomasswhilesimulatingsupplyvariationsandsouthernforestsandconsideredthatabovegroundbiomassonprivateforestlandsintheSouthcouldbeusedforenergyproduction.Thisisbasedontheassumptionthatpolicywouldnotrestricttheallocationofforestbiomasstobioenergyuses.

Thischapteranalyzesthepotentialeffectsoftheemergenceofabioenergymarketonsouthernforests,forestowners,traditionalforestproductindustries,andecosystemintegrityandservices;withemphasisonthefollowingkeyissues:

•Howmarketsforwoodforenergyproductionmightevolveandpotentialimplicationsfortraditionalforestproductindustriesandlandowners

•Thestatusofcurrentandpotentialtechnologiesthatcanhelprealizelarge-scaleproductionofwoodybioenergy

•Howbioenergypoliciescouldimpactforestlandownersandforestindustry

•Effectsofwoodybioenergymarketsonforestecosystemshealth;benchmarksforsustainability

meThoDS

Wesurveyedtheliteraturetoaddressquestionsabouttechnologydevelopment,bioenergypolicies,andsustainability,andwedevelopeddetailedmodelingtoprojectmarketchangesandincorporateananalyticalcomponentintotheresultsoftheliteraturesurvey.

Toassesstradeoffsbetweenthetraditionalforestproductindustryandthewoodybioenergyindustry,weevaluatedwoodybiomasssupplyvariationthroughtimeandassociatedprice,inventory,andremovalresponsesfollowingRossiandothers(2010).Inthefaceoffuturecompetitionforrawmaterialsandthepotentialcompetitiveadvantagethatpolicyincentiveswouldprovidetowoodybioenergysector,thistradeoffanalysiswasconsidered

215chAPTeR 10. Forest Biomass-Based Energy

criticalforthefutureofsouthernforests(Wearandothers2009).Manyauthorshaveexploredthisissue;whathasbeenlackingisasystematicanalysisofregionaltrendsthatassesseswoodybiomasssupplyinresponsetovariationinfutureconsumptionforenergy.

WemodifiedtheSubregionalTimberSupply(SRTS)model(Abtandothers2000),toassessthepotentialeffectsofbioenergyconsumptiononwoodproductsmarkets.Themodelprovidedprice,inventory,andremovalresponsesfordifferentwood-for-energyconsumptionandsupplyscenarios;andallowedustoestimateimpactsontraditionalforestindustriesandlandowners.

Ofthelarge-scalemacromodelsavailableforconductingouranalysis(Adamsandothers1996;DeLaTorreUgarteandRay2000;DeLaTorreUgarteandothers1998,2006),theSRTSmodelistheonlyonethattreatsstandingtimberasapotentialsupplyofbioenergyanddefinesregionsinawaythatiscongruentwithForestInventoryAnalysis(FIA)surveyunits.Becauseitincorporatesaninventoryprojectionmodelintoatimbermarketmodelframework,itsprojectionsarebasedonsupplyanddemandinteractions.Itallowsoflargerdiametersawtimbertobedowngradedfornonsawtimber(largelypulpwooduses)inresponsetopricesignalsandisfamiliartomanyforestindustryanalystsandStateforestryagencies,havingbeenusedtomodeltimbersupplyandpricesintheNortheast(Sendekandothers2003)aswellastheSouth(Binghamandothers2003,PrestemonandAbt2002).Ithasalsobeenusedtoassesstheinfluenceofnonmarketvaluesontimbermarketdecisionsbynonindustrialprivateforestlandowners(Pattanayakandothers2005),theeffectsofwoodchipmillsontimbersupplyinNorthCarolina(Schabergandothers2005),theimpactsofRenewableEnergyStandardspolicyimplementedinNorthCarolina(Galikandothers2009),andbioenergydemandsinSouth(AbtandAbt,inpress).

TheSRTSmodelestimatestwoforestproducts,sawtimberandpulpwoodproductallocationsforsoftwoodsandhardwoods.Itsequations—definedthroughsupply,demand,andinventoryelasticityvalues—areusedtoprojectthemarket-clearingpriceandquantitylevels,whichinturnareusedtoallocatesubregionalharvestingandtoprojectthenextperiod’sinventoryvalues.AGoalProgramthencategorizesthetotalwoodrequirementbymanagementtypeandageclassandmakesallocationstosubregions,owners,andproducts.

Theseparationofproductsandinventoryintermsofsawtimberandpulpwoodisbasedonuser-specifieddefinitionsthatallocatemostofthelargestdiameterwoodtosawmills,apercentofthelargestdiameterandallofthemediumdiameterwoodtopulpwood,andthesmallestdiameterwoodtotheforestfloor.Withtheseallocations,a

productmixiscalculatedforharvestinanymanagementtypeandageclasswiththeobjectiveofdefiningtheprojectedremovalmixfortheregion/ownerinawaythatfollowshistoricalharvestpatternsofexistingremoval-to-inventoryintensities.Forpartialharvests,themodeldefinesastockingtarget(volumeperacre)foreachmanagementtypeandageclass;ifthecurrentstockingisgreaterthanthetarget,theharvestisconsideredathinning.Afterthevolume-per-acretargetisreached,theharvestconsideredfinalandacresarereturnedtoageclasszero.Undermostcircumstances,thisapproachensuresthataveragestockingisclosetotarget(historical)levelsthroughouttheprojection(AbtandAbt2010;Abtandothers2000;Abtandothers2009,2010;PrestemonandAbt2002;Rossiandothers2010).

WemadeanumberofmodificationstotheSRTSmodel(fig.10.1)toassesstheeffectsofwoodybioenergyindustryonfutureprices,harvests,andinventoriesoffourwoodproductcategories—softwoodsawtimber,othersoftwoods,hardwoodsawtimber,andotherhardwoods—derivedfromprivateownersofforestland(publicforestlandshavebeenexcludedfromthestudy,becausepubliclandharvestdecisionsarenotnecessarilyprice-responsive).AppendixBcontainsdescriptionsoftheseproductsandtheallocationofconsumptionofeachforwoodybioenergyproduction.Themodelallocateswoodybiomassconsumptionamongproductgroupsbasedonthepricevariations.Pineplantationscanbeharvestedforpulpwoodasearlyas10yearsofage.Todeterminetheavailabilityofharvestresiduals,weappliedutilizationpercentagesthatareconsistentwithtimberproductoutputdatafortheSouth(Johnsonandothers2009).

Alternativerunsofthemodelallowedustoexaminehowmanagementorgeneticimprovementswouldaffectproductivity.Ratherthanapplyingidenticalresponsesacrossthefiveforestmanagementtypes(pineplantation,naturalpine,oak-pine,uplandhardwood,andlowlandhardwood),wemodifiedthemodelsothatresponsescanbedisaggregatedacrossthem.

WithintheSRTSmodel,theareaoftimberlandwillchangeinresponsetotherelativerentsofcropandforestuses.Wedefinedtimberrentsasweightedaveragesofsawtimberandnonsawtimberprices,withweightingspecifiedbythepresentvaluedifferenceinincomebetweenthetwoproductswhileagriculturalrentsareheldconstant.Becausewoodybioenergymarketsareexpectedtoimpactthenonsawtimbersectormorethanthehighvaluedsawtimbersector(Aulisiandothers2007),themodelallocateslessweighttosawtimberprices.

Weusedtheaggregatedemandinformationgatheredfromeachsouthernwood-basedindustry—forestproducts,woodybiomass-basedelectricity,woodybiomass-basedliquidfuels,andwoodpellets—toprojecttheallocationofharvested

216The Southern Forest Futures Project

timber.ThemodifiedSRTSmodeldefinesamarketsimulationmodelbasedonempiricalrelationships—demandandsupply,price,landuse,reforestationandinventory—forwoodybiomassandtraditionalforestproducts.Akeyassumptionisthatforestownersarepriceresponsiveanddecisionstoinvestorharvestaremadeaccordingly.

consumption/Demand Scenarios

Ourconsumptionscenarioswerebasedonthethreeprincipalusesofwoodybiomassforenergy:aspowerforelectricitygenerationthroughcombustionorgasificationprocesses,co-firingwithcoal,orincombinedheatandpowersystemsinindustrialfacilities(EnergyInformationAdministration2010b);asliquidfuel(cellulosicethanol)thatcanbeblendedwithconventionaltransportationfuels(EnergyInformationAdministration2010b);andasbioproductssuchashighly

compactwoodpelletsusedforheatingpurposes(SpelterandToth2009,appendixB).

Theamountofwoodconsumedforelectricity,liquidfuels,andpelletsdefinesthetotalrequirementformeetingbioenergyconsumptionprojections.Thiscanbemetwithwoodfromadditionalharvestingorwithresidualsandotherwoodwaste.Althoughharvestingunutilizedresidues(discardedtreetopsandlimbsgeneratedduringtheharvestingprocess)mightprovideaportionofwoodybiomass-basedenergyconsumption,recentanalysis(Galikandothers2009,Rossiandothers2010)indicatesthatmerchantabletimberisalsolikelytoberequired.Inaddition,woodybiomass-basedenergydemandfiguresneedtoaccountforurbanwoodwastesthatcouldbeusedforenergyproduction(Rossiandothers2010).BecausetheSRTSmodeldealsonlyinharvestedwood,webackedurban

Figure10.1—MethodologydiagramforthemodifiedSubregionalTimberSupplymodelusedtoprojectlevelsandeffectsofwoodybiomassconsumedforenergyfortheSouth.

Forest inventory plot data

Growth regressions Inventory and harvest data for plots

Timberland acreage change Price sensitive land use model

inventory proportion in term of d.b.h.Species, product, percentage degrade from sawtimber to nonsawtimber

Productivity increaseSubregion, product, owner, age class

Goal programEquilibrium harvest by region, owner and product are allocated to forest type, age class

harvest Subregion, product, owner

Starting acres, growth and harvest species, subregion, owner, age class, management type

inventory accounting Growth and removals

inventory available for harvest Subregion, product, owner

Product price Determined by interaction of aggregate demand and supply

Woody biomass for energy consumption scenarios Net of urban wood waste

Demand scenariosDownward sloping forest industry demand plus vertical demand curve for bioenergy

elasticity ValuesSupply elasticities based on Uinited States Forest Product model runs and demand elasticities (Abt and Abt 2010, Abt and others 2010)

2013,

217chAPTeR 10. Forest Biomass-Based Energy

wasteandothersourcesofnonharvestedwoodybiomassoutoftheconsumptionestimates,anddefinedtheremainderasharvested-woodconsumption(includingharvestingresidues)forwoodybiomass-basedenergy;appendixBshowsthemethodusedtoestimatetheharvestingresiduesandurbanwoodwastethatcanbedivertedforenergyproduction.Demandpriceelasticity,whichlikeinventorysupplyelasticitycanvarybyproduct(LiaoandZhang2008,Pattanayakandothers2002),wasassumedtobe-0.5forallfourSRTSproducts(softwood/hardwoodsawtimberandnonsawtimber),thesameassumptionusedbyAbtandAbt(2010)fortheirSouthwidetimbersupplyanalysis.

Demandforwoodybiomassforenergycanalsobemetwithfast-growingshortrotationwoodycropspecies,amongthemyellow-poplar(Populusspp.),willow(Salixspp.),cottonwood(PopulusfremontiiL.),sweetgum(Liquidambarstyraciflua),sycamore(Platanusoccidentalis),blacklocust(Robiniapseudoacacia),silvermaple(AcersaccharinumL.),andeucalyptus(Eucalyptuscinerea);thesespecieshavebeenidentifiedbytheU.S.DepartmentofEnergyaspotentiallyviableforenergyproduction.WefollowedtheapproachoutlinedbytheEnergyInformationAdministration(2010a)andassumedthatshortrotationwoodycropswouldgrowlargelyonnonforestedlands(agriculturalorpasturelands)andpartiallyoffsetincreasedfuturewoodrequirements.Weassumedoftheoffsettobe10percentby2050andremovedthismaterialfromwoodybiomassdemandsforbioenergy(ineffect,treatingshortrotationwoodycropsasapartoftheagriculturalsector).

Althoughwedescribeourassumptionsasconsumptionscenarios,itisimportanttounderstandthattheyarenotdemandprojections,aswehavenotspecifiedprice-responsivedemandrelationshipsforwoodybiomass.Theconsumptionprojectionisessentiallyaverticaldemandcurveaddedtothedownwardslopingdemandcurvesfor

traditionalforestproductsforeachperiodusingmodifiedEnergyInformationAdministration(2010b)projections.Asacounterfactual,wealsointroducedaconstantconsumptionscenariowithnoforestbiomass-basedenergymarketandrantheSRTSmodeltodefinetheamountofwoodybiomassthatwouldberequiredbytraditionalforestindustryabsentabioenergymarket.Subsequentyearsareheldconstantattheoriginal2010levelontheassumptionthatthetraditionalforestproductindustrywillnotincreasewoodconsumptionbeyondwhatwouldbeexpectedattheconstantpricelevelestimatedbySRTS.

Toaccountforuncertaintyinbioenergytechnologies,demands,andpolicies,weconsideredthreeconsumptionscenariosthatwelabelhigh,medium,andlow.Thelow-consumptionscenarioassumesthat7.74percentoftotalelectricitywillderivefromrenewablesourcesbasedonEnergyInformationAdministration(2010b)referencecaseprojections.Themedium-andhigh-consumptionscenariosassumethat20percentoftotalelectricityconsumptionderivesfromrenewablesources;inthehigh-consumptionscenario,woodybiomassisassignedahigherpercentageofthetotalelectricitygenerationfromrenewablesources(table10.1).

Biomass Supply

TheSRTSmodelaccountsforforestinventorychangesandtimberremovalsbasedonhistoricalforestinventory(FIA)data.However,southernforestproductivityhasseenathree-foldoverthelast50yearsfromadvancementsinmanagementandgeneticimprovements(Foxandothers2007).Siryandothers(2001)projectedthatproductivitygainsforpineplantationscouldbeashighas100percentofempiricalFIAdata(usingdatafromthelate1990s)overthenext50years.PrestemonandAbt(2002)assumeda75-percentproductivitygaininsouthernpineplantationsfrom2000to2040.Withstrongmarkets,otherforest

Table 10.1—Allocation of woody biomass for energy production under woody biomass consumption scenarios by 2050

Woody biomass consumption scenario electricity liquid fuels Wood pelletsLow Based on Energy Information

Administration (2010b) projectionsProvides 30 percent of renewable energy sources

Based on Spelter and Toth (2009)

Medium Increases to 20 percent of renewable energy sources by 2050, with share of total electricity sources remaining the same as in the low-consumption scenario

Increases to 50 percent of renewable energy sources by 2050, with 30 percent of total liquid energy coming from woody sources

Increases by 25 percent, 2015–50

High Increases to 40 percent of renewable energy sources by 2050, with 20 percent of total electricity coming from woody sources

Increases to 50 percent of renewable energy sources by 2050, with 40 percent of total liquid fuel coming from woody sources

Increases by 50 percent, 2015–50

218The Southern Forest Futures Project

managementtypesmightexperienceproductivitygainsduetosilviculturalimprovementsorimprovementsinmanagement,althoughnotashighaspineplantations.

Wedevelopedsupplyprojectionstoexaminealternativetrajectoriesofproductivityincreasesthrough2050.Intheseprojections,productivitygrowthisappliedtoeveryacreeveryyear,sothatovertimetheimprovedsilviculturalpracticesonexistingornewforeststandsorgeneticimprovementsofnewplantationsresultinanaggregategrowthresponse.Forthe“pineproductivity”strategy,weassumedthatpineplantationproductivityincreasessteadilyuntilitreaches100percent,whiletheproductivityofotherforestmanagementtypesisheldconstant.Forthe“allproductivity”strategy,weassumeda100-percentpineplantationproductivityincreaseanda25-percentincreaseforothertypes.Forthe“lowproductivity”strategy,pineplantationproductivityincreasesby50percentandtheproductivityofothertypesincreasesto25percent(tables10.2and10.3).Theseassumptionsareinlinewithhardwoodfieldtrialsthatreportgrowthresponsesbetween17and33percentafterstemdensityreduction,herbaceouscompetitioncontrol,andfertilization(Siryandothers2004).

WithinSRTS,removalsaretreatedasafunctionthatrespondstochangesintheproductpriceandthetotalbiomassinventory.Thetimbersupplyelasticitywithrespecttoinventoryhasbeenassumedtobe1.0forallproductsandowners.Forown-priceelasticitiesoftimbersupplies(elasticityofproductdemandwithrespecttotheirownprice),weusedtheaveragebootstrappedvaluesforA1BandB2cornerstonefuturesdescribedinchapter9,whichvaryacrossproductsandyearsandrangefrom0.18to0.32.

ReSulTS

market Analysis

By2050,woodybiomassconsumptionisprojectedtorangefrom150.16milliongreentonsforthelow-consumptionscenarioto235.88millionforthemedium-consumptionscenarioand316.12millionforthehigh-consumptionscenario(fig.10.2).Theamountofurbanwoodwasteamountstoabout12.72millionin2010andtrendsslightlyupwardthroughouttheprojectionperiodtoreach20.08millionby2050.Incontrast,theprojectionofbiomassrequirementfortheforestproductsindustry(heldconstantthroughtheprojectionperiod)isabout278.46million.By2050,thebiomassrequirementforenergyreachesabout54percentoftheforestproductsrequirementforthelow-consumptionscenarioand85percentforthemediumscenario.Forthehigh-consumptionscenario,thebioenergyrequirementexceedstheforestproductsrequirementby2045

andis13percentgreaterthantheforestproductrequirementin2050.

Addingurbanwoodwasteandtheforestbiomassconsumptionrequirementin2050wouldbringdemandto170milliontonsforthelow-consumptionscenario,256millionforthemediumscenario,and336millionforthehighscenario.TheseestimatesarecomparabletootherestimatesintheliteratureifweassumethatthatsupplyofwoodfromtheSouthmirrorsthenationalharvestshare—i.e.,approximately57percentofnationalharvestasperHansonandothers(2010).

Withoutaccountingformillingresidues,Milbrandt(2005)estimatedthatjust86milliontonsofwoodybiomassisreadilyavailableforenergyproduction(roughlyhalfoftheprojectionforthelow-consumptionscenario).Walsh(2008)estimatedthatapproximately121milliontonsofforestandmillresiduescouldbesuppliedatapriceof$100perdryshortton,comparedtoestimatesof154milliontonsbyKumarappanandothers(2009).TheEnergyInformationAdministration(2007)estimatedthatapproximately414milliontonsofwoodfromSouthmightberequiredtomeettheFederalgoalof25percentofrenewablefuelandelectricitystandards.Sample(2009)suggestedthatthisdemandfigurecouldbemuchhigher,estimatingtheyearlyrequirementat992milliongreentons.Perlackandothers(2005)estimatedthat420milliongreentonsofwoodresourcescouldbeannuallymadeavailableforenergyproductionfromsouthernforests.

Consumptionincreasesofthismagnitude(ataminimum,a54percentincreaseintimberharvesting)couldimplyastructuralchangeinforestproductsmarkets.Analysisoftraditionalwoodproductsmarkets(chapter9)indicatesthatthesupplyofbiomasscouldgrowbyabout43percentundercurrentlevelsofproductivitywithoutincreasedscarcity,largelybecauseofdecliningdemandsforwoodproducts.Withplantationproductivitygrowthatabout50percentby2060,forestbiomassoutputcouldexpandbyasmuchas70percentwithoutsubstantialimpactsonmarketscarcity.

Toidentifythemarketimplicationsofthethreeconsumptionscenarios,werantheSRTSmodel,whichprovidesprojectionsoftheremovalsfromgrowingstockresultingfromtimberharvestingbutdoesnotdistinguishamongfinalproducts.Todeducetheimplicationsofincreasedwoodybiomassrequirementforthetraditionalwoodproductsindustry,wedisaggregatedtheremovalsprojectionsintoharvestingresidues,additionalremovalsthatcouldnothaveoccurredwithoutwoodybioenergymarkets,and/ordisplacementfromtraditionalwoodproductindustry.

Toensurethatsomeslashisleftontheground,weconstrainedtheSRTSmodelsothatnomorethan

219chAPTeR 10. Forest Biomass-Based Energy

Table 10.2—Simulations of supply responses when woody biofuels at three consumption levels are matched with four productivity strategies, 2050

Woody biomassconsumption scenario Productivity strategy Details

Medium Only improve pine plantation productivity Productivity of pine plantations doubles; no change in other forest management types

Medium Improve productivity on all management types

Productivity of pine plantations doubles by 2050 and productivity of other forest management types increases by 50 percent

High Only improve pine plantation productivity Productivity of pine plantations doubles; no change in other forest management types

High Improve productivity on all management types

Productivity of pine plantations doubles and productivity of other forest management types increases by 50 percent

Short rotation woody crops Improve productivity on all management types and expand short rotation woody crops

Short rotation woody crops growing on agricultural or pasture land offset 10 percent of wood energy demand; productivity of pine plantations doubles and productivity of other forest management types increases by 25 percent

High Low productivity Productivity of pine plantations increases by 50 percent and productivity of other forest management types increases by 25 percent

Table 10.3—Modified subregional timber supply model assumptions

Assumption Scenario/Strategies DetailsWoody biomass consumption for electricity and biofuels

Low,Medium. High Demand values in million green tons (Energy Information Administration 2010b)

Urban wood waste Low,Medium. High Per capita availability (Carter and others 2007)Harvest residues Low,Medium. High SRTS model run based on Johnson and others (2009) data Forest industry demand Low,Medium. High Auxiliary SRTS run for constant pricesDemand elasticity Low,Medium. High -0.5 for all products (Abt and others 2010)Supply elasticity Low,Medium. High Different annual values for products based on RPA storylinesa Pine productivity Pine productivity strategy Pine productivity increases by 100 percent by 2050

All productivity values All productivity strategy Pine productivity increases by 100 percent and other forest type increases by 50 percent by 2050

Low productivity values Low productivity strategy Pine productivity increases by 50 percent and other forest type increases by 25 percent by 2050

Short rotation woody crops Short rotation woody crops

Short rotation woody crops take care of 10 percent of total woody biomass for energy demand by 2050

Forest management type acreage

All scenarios and strategies

Forest land change as compared to agriculture and pasture land, in turn impacting acreage of pine plantations, natural pines, oak-pines, upland hardwoods, and lowland hardwoods (Abt and Abt 2013, Hardie and others 2001)

Timber rent All scenarios and strategies

Weighted average of pulp and sawtimber prices. Model allocates weights, with pulpwood gaining more weight in total rent calculations

Degradation of sawtimber for pulp use

All scenarios and strategies

Percentage allocation of sawtimber that can be used as pulp (Abt and others 2010)

Pulp diameter range All scenarios and strategies

<9 inch softwood<13 inch hardwood

Sawtimber diameter range All scenarios and strategies

>9 inch softwood>13 inch hardwood

Forest products All scenarios and strategies

Sawtimber softwoods, other softwoods, sawtimber hardwoods, and other hardwoods

aPersonal communication. 2010. David N. Wear, Project Leader, Center for Integrated Forest Science, Southern Research Station, U.S. Department of Agriculture Forest Service, Raleigh, NC 27695.

226The Southern Forest Futures Project

reachingfivetimesthe2007levelforsoftwoods,andeighttimesthe2007levelforhardwoods.Inventoryandharvestlevelsforsoftwoodsarehighercomparedtolow-orno-consumptionscenarios,butlowerthanthemediumscenario;forhardwoods,inventorylevelsaremuchhigherthantheno-orlow-consumptionscenariosandremovalsarehigherthanallotherscenarios.Thepulpindustryisadverselyimpactedassignificantsuppliesaredivertedtoenergyproduction(fig.10.12).Thebioenergyrequirementisnotmetbynewremovals,pulpwood,orharvestingresidues,resultinginacompleteeliminationofforestindustrydemandforhardwoodsby2037followedbysoftwoodsin2043.

Theprices,inventory,andremovallevelsofsawtimberaresimilartotheotherconsumptionscenarios.Theindustrywouldexperienceasignificantimpactas91milliongreentonsofsawtimberisdivertedtoenergyproduction.Theincreasedacreageofpineplantationsmightresultinsomeofthesoftwoodtimbermovingtosawtimberdiameters.Significantamountsofhardwoodsawtimberarealsodivertedtoenergyproduction.

Privateforestacreageincreasesby9percentfrom175.39millionacresin2010to191.6millionacresin2050(fig.10.13),21percenthigherthantheno-consumptionscenario.Allforestmanagementtypesexceptnaturalpinesincreaseinareaby2050,ledbya33percentincreaseinpineplantationacreage.Initialacreagedeclinesforuplandandlowlandhardwoodsandoak-pinesarereversedafter2027,resultingina2-percentnetincreaseby2050.

Supply Adjustment Strategies

Increasedconsumptionforwoodbyanewwoodybioenergyindustrycanbeexpectedtoresultinthesupplysideadjustmentssuchastheuseofshortrotationwoodycropsandtheincreasedproductivitystrategiesdescribedbelow.

Productivity increases limited to pine plantations—Anincreaseinpineplantationproductivitywoulddomoretodampennonsawtimbersoftwoodpriceincreasesinthemedium-andhigh-consumptionscenarios(fig.10.14)thanintheno-andlow-consumptionscenarios(whichdonotstimulateproductivitygains),withpricesfallinguntilthelate2020sbeforebeginningtoincreaseagain.Inventoryandremovalslevelsarealsohigher.Theincreaseinproductivityofpinesalsolowerspriceresponsesforhardwoods,largelybecauseincreasedsoftwoodinventoriesfulfillthedemandsforbioenergy.

Figure10.15showsprice,inventory,andremovalprojectionsforsawtimberundermedium-andhigh-consumptionscenarios.Forsoftwoodsawtimber,productivityincreasesinpineplantationsalsoresultinlowerpricesandhigherinventoryandremovalsunderbothincreasedproductivity

strategies,withthemedium-consumptionscenarioprovidingagreaterpricedampeningeffectthanthehigh-consumptionscenario.Pricetrendsarethesameforhardwoodsawtimberbutthedecreasesarelessextreme.Higherinventorylevelsresultfromtheincreaseinproductivity,whichreducesprices.Theimpactonthesawtimber-usingindustryisalsoreduced.Forexample,inthehigh-consumptionscenario54.5milliongreentonsofsawtimberfrombothhardwoodsandsoftwoodsisdivertedtoenergyuseinthepineproductivitystrategyascomparedto91milliongreentonsassociatedwithnoproductivityincreases.Thedecreasedimpactontheforestindustryisduetoexpandedremovalssupportedbyincreasedproductivity.

Productivityincreasesresultinhigherremovalsandlessdisplacementfromforestindustry(fig.10.16).Thesoftwoodsbeingusedbyforestindustryarestillcompletelydivertedforenergyproductioninthehigh-consumptionscenario,butthisoccurslater.

Forestmanagementtypetrendsaresimilarforthemedium-andhigh-consumptionscenarios,withincreasesinpineproductivityresultinginlowerlevelsofprivateforestacreageforbothscenarios(fig.10.17)—9.6percentforthemedium-and10.2percentforthehigh-consumptionscenario—albeitmuchhigherthanfortheno-consumptionscenario.Becauseproductivitygainsarelimitedtosoftwoods,ahighershareofthewoodrequirementsforwoodybioenergymarketsismetbysoftwoodsthanhardwoods.Acreagedeclinesacrossallfivemanagementtypes,withthehighestrateofdeclineinpineplantations.

Productivity increase extended to all management types—Aproductivityincreaseforallforesttypesresultsinprice,inventory,andremovalresponsesthataresimilartothoseobservedforincreasesinpineplantationsalone,theonlydifferencebeinginthemagnitudeofchange.Softwoodpriceislowerandinventoryandremovallevelsarehigher(fig.10.18).Hardwoodtrendsformedium-andhigh-consumptionscenariosaresimilartothesoftwoods,withlowerpricesandhigherinventoriesandremovalsthanwasprojectedforplantedforesttypesalone(fig.10.19).

Nonsawtimbersoftwoodsusedbyforestindustryarestillcompletelydivertedtoenergyproductioninthehigh-consumptionscenario,buttheimpactonthesawtimber-usingindustryisreduced.Forexample,inthehigh-consumptionscenario,36.38milliongreentonsofsawtimberfromisdivertedtoenergyuseascomparedto53.5milliongreentonswithpineproductivityaloneand91milliongreentonswithnoproductivity(fig.10.20).Higherremovalsofsawtimberareattributedtounharvestedpulpwoodtimbermovingintothehigherdiametersawtimberclass.Theproductivityincreasesthereforeresultinhigheracreageandhigherinventoryattheaggregatelevel.

235chAPTeR 10. Forest Biomass-Based Energy

Comparedtoplanted-pine-aloneproductivitystrategy,thisapproachincreasestotalforestareaforbothmedium-consumptionscenario(165.52millionacres)andthehigh-consumptionscenario(175.01millionacres),withacreageincreasesforallforestmanagementtypesexceptpineplantations(fig.10.21).

Low productivity increase—Lowerproductivityincreasescombinedwithmedium-andhigh-consumptionscenariosresultinprice,inventory,andremovalresponsessimilartotheallproductivityincreasestrategies(figs.10.22and10.23).

Thesupplyresponseofthelowproductivitystrategyfailstooffsetthewoodybiomassrequirements,withallnonsawtimbersoftwoodbeingdivertedfromforestindustrytoenergyproductionunderthehigh-consumptionscenarioandasignificantamountdivertedunderthemedium-consumptionscenario(fig.10.24).Theimpactonthesawtimber-usingindustryishigherthanfortheallproductivityorpineproductivitystrategies,butlowerthanifnoproductivitymeasuresweretaken.Forexample,inthehigh-consumptionscenario,57.18milliongreentonsofsawtimberisdivertedtoenergyuseascomparedto36.38milliongreentonsfortheallproductivitystrategy,53.5milliongreentonsforthepineproductivitystrategyand91milliontonsifnoproductivitymeasuresweretaken.

Privateforestacreageishigherthanfortheothertwoproductivitystrategies.Forestlanddecreasesfrom175.39millionacresin2010to172.47millionacresforthemedium-consumptionscenario,butincreasesto181.85millionacresforthehigh-consumptionscenario(fig.10.25).Plantedpineacreageincreasesmoreandotherforesttypeacreagedeclineslessascomparedtothepineproductivityorallproductivitystrategies.

Productivity increases on short rotation woody crops—WeranthemodeltosimulatetheresultsofahighproductivitystrategycoupledwiththeemergenceofshortrotationwoodycropsintheSouth.Inventoriesandremovals(fig.10.26)arehigherthanfortheallproductivitystrategycoupledwithhighconsumption(similartoresultsfromasubsequentruncombiningalowproductivitystrategywithshortrotationwoodycrops).Softwoodandhardwoodinventoriesarehighercomparedtotheno-consumptionscenario.Priceincreasesforallproductsaredampened.

Theseresultsalsosuggestthatthepulpindustrywouldstillfaceadverseimpacts,asmerchantablewoodfromforestindustrywouldbedivertedtoenergyproduction(fig.10.27).However,thecombinationofincreasedsuppliesfromshortrotationplantationsandfromproductivitygainsonexistingforestswouldprovidemostofthe‘additional’sawtimberneededforenergyproduction,resultinginjust26.7milliontonsdivertedfromforestindustry.Thehigherlevelsof

aggregateinventoryandremovalscounterthenotionthatdivertingwoodforenergywouldnecessarilyleadtoinventorydeclines.Forestacreageislowerthanfortheotherproductivitystrategies,buthigherthantheno-consumptionscenarios(fig.10.28).

Technologies

Consideringthepotentialavailabilityofwoodthatcouldbeusedinthetraditionalforestproductindustriesandwoodybioenergyindustries,itisimportanttodeterminehowcurrentandlikelysuitablewood-to-energyconversiontechnologiescanpotentiallyimpactthefutureofsouthernforests(forexample,howtechnologicalpreferencestowardsaparticularspeciesmightincreaseitsprice,producingchangesininventoryandremoval).DwivediandAlavalapati(2009)foundthatabroadspectrumofstakeholdersviewconversiontechnologiesasoneofthemainweaknessesforthedevelopmentofforestbiomass-basedenergyintheSouth.Inaddition,Nesbitandothers(2011)foundthatundercurrentlevelsoftechnology,slashpineethanolisnotafinanciallyviablecompetitorforfossilfuels.Theyfoundthatunitcostofproducingethanolfromslashpine(Pinuselliottii)throughatwo-stagedilutesulfuricacidconversionprocess,andasynthesisgasethanolcatalyticconversionprocesswasestimatedtobe$2.39pergallonand$1.16pergallonrespectively.Ifadjustmentsarebasedonthelowerenergycontentofethanolrelativetogasoline(OakRidgeNationalLaboratory2008),thecostofanenergyequivalentgallonofethanolincreasesto$3.55and$1.74pergallonforthetwoconversionprocesses,respectively.

Woodybiomasscanbeconvertedintoenergyusinganumberofdifferentprocesses.Broadlyspeaking,wood-to-energyconversiontechnologiescanbegroupedintotwomaincategories:thermaltechnologies—suchasco-firingandcombinedheatandpower,directcombustionusingwoodpelletsandwoodchips,gasificationandpyrolysis—andbiochemicalprocesses.

Co-firing and combined heat and power—Combustionofwoodybiomasscanbeappliedtoproduceheatandelectricity,particularlyinindustrialandresidentialsectors.Threemajortechnologyoptionsarebeingdevelopedforproducingelectricityandheat.Theseare:settingupdedicatedcellulosicpowerplants,co-firingbiomassinexistingcoalplants,anddevelopingcombinedheatandpowerplants.AlltheseoptionsarebeingexploredintheSouth,rangingfromadedicatedpowerplantthatwilluseurbanwoodwaste,woodprocessingwastes,andloggingresiduesinGainesville,Floridatoplantsthatblendbiomasswithcoalorinjectbiomassseparatelyintoboilers.Currently,27co-firingplantssupplyabiomass/coalco-firingcapacityof2,971megawatts.Virginiaistheleaderinthenumberofco-firingplantsandcapacityintheSouth,followedbyNorth

242The Southern Forest Futures Project

aremoreexpensiveandhavelowerethanolyields,buttheyalloweachtobecarriedoutatitsoptimaltemperature(Jacksonandothers2010).

Althoughseveralhydrolysistechniqueshavegainedmomentuminthelastdecade,efficiencyandcostissueshavehinderedcommercialviability.Anintegratedenzymaticprocesscouldcontributetocostreductions,butithasnotyetmovedoutofthelaboratorystage.

TheDepartmentofEnergyset2012commercializationtargetsforresearchanddevelopmentwhichincludedreducingthesellingpriceofethanolby2012to$1.07ratherthan$1.61pergallon,increasingethanolyieldperdrytonfrom56gallonsin2005to67gallonsin2012,andreducinginstalled2005capitalandoperationalcostsby35.5percentand65.3percentrespectively.Forfermentationbasedethanolproduction,thetargetistoincreaseyieldfrom65gallonspertonin2005to90gallonspertonin2012.Thetargetalsosetsfeedstockcosttargetfor2012as$35perdryton.Effortsareongoingtoachievethesetargets,butnotechnologicalbreakthroughhasyetachievedtheselarge-scaleproductiontargets.TheRangeFuelplantinSoperton,GeorgiaproducedwastewoodmethanolinAugust2010,andcurrentlyproducingitsfirstbatchofcellulosicethanol.However,theplantisshuttingdownoperationsafterdemonstratingitscellulosicproductiontechnology.Thescaleofbioenergyplantintermsofcapitalandbiomassdemandsfromtheforestlandscapeareissuesthatneedfurtherattention.Ifalargeplantissetup,thenthetransportationcostofprocuringbiomassfromareasfartherfromtheplantsitemightincreaseperunitcostand/orleadtoprocuringlowerqualityfeedstock.Thescaleoftheplantnotonlydependsoncostissues,butalsoonthepurposeforwhichitisbeingbuilt.Forexample,VanLooandKoppejan(2008)suggestthatsmallcombinedheatandpowerplantfacilitieswithlowerconversionefficiency(10percent)canbeusedwhereheatistheprimaryproductwithpowerasthesecondaryproduct,whilefacilities(morethantenmegawatts)generallyhavehigherefficiency(25percent)astheyproduceelectricityastheprimaryproduct.

The Policy environment

Anumberofcurrentandproposedpoliciesandprogramsmayinfluencethefutureofwoodybiomass-basedenergymarketsintheSouth.Someofthesepoliciesaredirectedspecificallyattheexpansionofwoodybiomassuseforenergy,andothersinfluenceindirectlybyfocusingonreductionsofgreenhousegasemissions.

Incentive-basedpoliciesprovidefinancialsupportsuchascost-shares,taxreductions,subsidiesorgrants,andlow-orno-interestloansforprojectfinancing.TheDatabaseofStateIncentivesforRenewablesandEfficiency(2010)reportsthat

policiesforrenewableenergy(includingwoodybiomassforenergy)intheSouthernStatesaregenerallyintheformoftaxrebates,grants,loans,industrysupport,bonds,andperformance-basedincentives.

Regulatoryandsupportmechanismsincludepoliciesthatsetgoals,targets,andlimits;andcompelcertaintypesofbehavior,aswellascreatingsupportiveinfrastructureandfacilitatingpubliceducationaloutreach.Rules,regulations,andpolicies(regulatoryandsupportpolicies)areintheformofpublicbenefitfunds,renewableportfoliostandards,netmetering,interconnectionstandards,contractorlicenses,equipmentcertification,accesslaws,constructionanddesignrules,greenpowerpurchasingguidelines,andgreenpowerpolicies.

Incentive-based policies—Inanefforttosupportmarket-basedsolutions,FederalandStategovernmentshaveintroducedanumberofincentive-basedpolicies.Thisgenerallyresultsinalteringpricesbyassigningamonetaryvaluetosomethingthatwaspreviouslyexternaltomarketforces(Shrum2007).Subsidiesareintendedtoencourageplantingandmanagementactivitiesthatmightpromotefeedstockavailability,andtaxsupportencouragestheuseofrenewables.Supportintheformofgrantsandloansarealsoprovidedtoencouragecleantechnologydevelopmentandadoption.

IncentivesforliquidbiofuelswerefirstinstitutedintheEnergyTaxActof1978,whichprovideda$0.40pergallonexemptionfromthegasolineexcisetaxforblendswithatleast10percentethanol.Thenitwasincreasedto$0.51pergallonbythe1998TransportationEquityActofthe21stCentury.TheAmericanJobsCreationActof2004replacedtheexcisetaxexemptionwithavolumetricethanolexcisetaxcreditof$0.51pergallonuntil2010(reducedto$0.45pergallonbytheFarmBillof2008).TheEnergyIndependenceSecurityAct(2007)providedaproductiontaxcreditof$1.01pergallonforcellulosicbiofuelsthrough2012.ThefollowingsectionsummarizesthecurrentbioenergypoliciesintheSouth.

The2008U.S.FarmBillcreatedanewBiomassCropAssistanceProgram(BCAP)toencouragedevelopmentoflarge-scaleenergycropsthatcansupportcommercial-scalebioenergyproduction.BCAPprovidesincentivestofarmers,ranchers,andforestlandownerstoestablish,cultivateandharvestbiomassforheat,power,bio-basedproducts,andbiofuels.Theprogramsharestheestablishmentcostandmatchescostrelatedtotransportationandlogisticsupto$45pertontoproducerswithuserfacilitiescontracts.Theprogramreducesthefinancialrisktofarmersandforestlandownerstosupplyeligiblebiomassmaterialstoqualifyingfacilities,andcanreducethecostofrawmaterialstothefacility.Thesealsopromoteconservationandstewardshipbyemphasizingthatbiomassiscollectedandharvested

243chAPTeR 10. Forest Biomass-Based Energy

accordingtoanapprovedconservation,orsimilarplantoprotectsoilandwaterqualityandpreservefuturelandproductivity.

RebatesfollowedbyloansarethemostpopularfinancialincentivesintheSouth(table10.4).Federalfinancialincentivesaremainlycomprisedofcorporatetaxrebates,researchanddevelopmentgrants,andloans.Loansandperformance-basedincentivesarethepoliciesmostfrequentlyusedinthe76StatefinancialincentiveprogramsintheSouth.NorthCarolinahasthelargestnumberofStatefinancialincentives(eight),andTexashasthesmallest(two).

FewStateprogramsarespecificallyaimedatincreasingwoodybiomassstockforenergyuse,partlybecausewood-for-energymarketshavenotyetbeenestablished.However,moreoftenthannot,improvementinforestbiomassavailabilityandsustainableuseisanoffshootalthoughnottheoverarchinggoaloftheseprograms.AlthoughtheminimumacreageandstockinglevelsforpropertytaxcalculationsvaryacrossSouthernStates,thegeneralobjectiveofallthesetaxesistoprovideanincentiveformanaginglandonasustainedyieldbasisandadisincentiveforconvertingforestlandtootheruses.Theobjectivesof

Statecost-shareprogramsaretoreforestcutoverland,plantopenland,orimprovewoodlands;andmanyStatesoffertosharethecostsofotherforestmanagementactivities.Forexample,SouthCarolinahasforestrycommissioncost-shareprogramsandNorthCarolinahasforestagriculturecost-sharingprograms.Theseprogramsleadtohigheravailabilityoffeedstocksforenergyconversion.

SeveralFederalprogramsprovideincentivesforconservationofforestlandsandmaintainingsustainableforestmanagementpractices.Forexample,theEnvironmentalQualityIncentivesProgram(EQIP)providescostsharesforinstallinggreenhousegasmitigatingtechnologiesandtheLandownersIncentiveProgramprovidesfinancialassistancetolandownersforavarietyofconservationgoalsincludingcarbonsequestration.TheForestLandEnhancementProgrampromotesadditionalcarbonsequestrationandotherecosystemservicesthroughcostshareswithlandowners.Theseprogramshelptoreducelandusechangeawayfromforests,inturnindirectlymaintainingtheforeststockthatcanbeusedforenergyproductionatalaterdate.IncentiveprogramsforreforestationhavelongbeenestablishedinanumberofStates.Forexample,Mississippiprovidestaxcreditsforreforestation.

Table 10.4—Number of financial incentives for renewable energy at Federal and State levels (blanks indicate no incentives): Number in the parentheses means whether incentives are State governments (S), utility companies (U), local governments (L), or nonprofit organizations (N)

State(s)Personal tax

corporate tax

Sales tax

Property tax Rebates Grants loans

industry support

Performance- based incentive

All States (Federal incentives) 3 4 3 5 1 1Alabama 1(1S) 3(3U) 1(1S) 3(1S,2U) 1(1U)Arkansas 2(1S,1U) 1(1U) 1(1S)Florida 2(2S) 2(2S) 12(1S,10U,1L) 6(1S,5U) 1(1L) 2(2U)Georgia 1(1S) 1(1S) 1(1S) 10(1S,9U) 1(1S) 2(2U)Kentucky 1(1S) 2(2S) 1(1S) 11(1S,10U) 1(S) 4(1S,1U,1L,1N) 1(1S)Louisiana 1(1S) 1(1S) 1(S) 2(2S)Mississippi 5(1S,4U) 4(1S,3U) 1(S)North Carolina 1(1S) 1(1S) 1(1S) 2(2S) 6(6U) 1(1S) 4(3S,1U) 4(3S,1N)Oklahoma 1(1S) 3(3U) 6(4S,2(U) 1(S)South Carolina 1(1S) 2(2S) 1(1S) 6(6U) 6(1S,5U) 4(1S,2U,1N)Tennessee 1(S) 2(1S,1U) 2(2S) 3(2S,1U) 1(S) 1(S)Texas 1(1S) 1(1S) 27(25U,2L) 2(2S) 2(2S) 1(1S) 2(2U)Virginia 1(1S) 1(1S) 1(1S) 1(1S) 1(1U)Total 9 15 6 6 88 10 48 7 20

Source: Database of State Incentives for Renewables and Efficiency (2010).

244The Southern Forest Futures Project

Regulations and support programs—AttheFederallevel,theEnergyPolicyActof2005establishedRenewableFuelStandards,whichmandatedthattransportationfuelscontainaminimumvolumeofrenewablefuels,startingwith4billiongallonsin2006and7.5billiongallonsby2012.TheEnergyIndependenceSecurityAct(2007)calledforproductionof36billiongallonsofbiofuelsby2022,ofwhich21billiongallonsmustbecellulosicbiofuel.The2008FarmBillauthorizedmandatoryfundingof$1.1billionforthe2008to2012,providinggrantsandloanstopromotealternativefeedstockresourcesincludingwoodybiomass.InterconnectionstandardsandgreenpowerpurchasinghavealsobeenformulatedattheFederallevel.

ConstructionanddesignsupportforestablishmentofbioenergyproductionfacilitiesandnetmeteringavailabletobiomassbasedenergyfacilitiessotheycansellpowerbacktothegridarethemostemployedState-levelpoliciesintheSouthand10SouthernStateshavealsoformulatedrenewableportfoliostandardsastargetsforusingcleanersourcesofenergyinutilitiesandindustries.

Extensionandsupportactivitieshavefacilitatedknowledgetransfers,technologydemonstrations,andinformationsharingsessions;andhavedevelopedmulti-stakeholderpartnershipstoreducegreenhousegasemissions.Extensionagentsandspecialistsatland-grantuniversitiesandgovernmentinstitutionstransferknowledgeaboutnaturalresourcemanagement(includingwoodybiomass-basedenergy)toclientgroups,suchasforestowners,forestersandothernaturalresourcemanagers,treegrowers,loggers,andforestworkers.Non-StateeffortsaimedatlandownersincludeaStateTreeFarmprogramthatrecognizeslandownerswhoaredoingagoodjobofmanagingtheirlandwithacertificate,subscriptiontoTreeFarmmagazine,andTreeFarmsigntodisplayontheirproperty.Regularinteractionbetweenlandownersandprofessionalforestersisfacilitatedthroughperiodicvisitsbyforesters.

TherehavebeennumberofeffortsbypolicymakersintheUnitedStatestocreatemarketsasamechanismtoregulateGHGemissions,althoughnobillhasyetbecomelaw.Forexample,theHousepassedtheAmericanCleanEnergyandSecurityAct(a.k.a.Waxman-Markey)onJune26,2009,andthreeotherbillsweresubmittedtotheSenatein2009and2010:theCleanEnergyJobsandAmericanPowerAct(Kerry-Boxer),theAmericanPowerAct(Kerry-Lieberman),andtheCarbonLimitsandEnergyforAmerica’sRenewalAct(Cantwell-Collins).Waxman-Markey,Kerry-Boxer,andKerry-Liebermanwouldcreatemarketsforemittingandoffsettingcarbondioxideandpermitthepurchaseofupto2billionmetrictonsofcarbonoffsetsannually(Mercerandothers2011).GorteandRamseur’s(2008)estimatethatataCO2epriceof$50permetricton,morethan800millionmetrictonofCO2ecouldbesequesteredthrough

afforestationactivities,andapproximately380millionmetrictonthroughimprovedforestmanagementactivities.Since2010,littlecongressionalefforthasfocusedonclimateingeneralandcarbonsequestrationpoliciesinparticular.

Forestryoffsetprojectsincludingmitigationofgreenhousegasesthroughbioenergyproductioncanpotentiallyaccruecarboncreditsbuttheaccountingischallenging.Assumingthatenergycropsdonotleadtolandusechanges,lifecycleanalysesofdifferentbiofuels(includingwoodybiomass)suggestoverallgreenhousegasreductions(BlottnitzandCurran2006,Erikssonandothers2007,Gustavssonandothers2007).Searchingerandothers(2008)arguethatlifecyclestudieshavefailedtofactorinindirectlandusechangeeffects,andsuggestthatusingU.S.croplandsorforestlandsforbiofuelsresultsinadverselanduseeffectselsewhere,thusharmingtheenvironmentratherthanhelpingit.Indirectlandusechangeeffectsaredifficulttoassess,andtodaythereisnogenerallyacceptedmethodologyfordeterminingsucheffects.Fritscheandothers(2006)argueforassessingindirectinfluenceofbioenergyonlandusechangethroughmeasuressuchaslandpricesandrents.However,conductingsuchassessmentsatthesitelevelandtranslatingthesetooperationalindicatorsisquitecostly.Asatisfactorymethodologyforincorporatingtheeffectsofindirectlandusechangesintothelifecyclegreenhousegasemissionsoffuelsremainsanimportantchallenge.

TherearealsopoliciesandregulationsthatcouldlimitdevelopmentofabioenergyindustryintheSouth.TheEnvironmentalProtectionAgency’sfinalGreenhouseGasTailoringRule,doesnotexemptbiomasspowerproducersfromgreenhousegaspermittingrequirements,andmightacttolimittheestablishmentofbioenergyconversionplants(Mendellandothers2010).Thisruletreatscarbonemissionsfrombiomasscombustionidenticallytofossilfuelsemissionsandincreasescostsassociatedwithobtainingpermitsandcostsassociatedwithtechnologyrequirements,suchasBestAvailableControlTechnology.Mendellandothers(2010)suggestthatregulatoryuncertaintycreatedduetothisregulationcouldaffectestablishmentof130renewableenergyprojects,and$18billionincapitalinvestmentacrossthecountry.Similarly,theEnvironmentalProtectionAgency’sairqualitypermittingforbiomassboilersimpactsbiomassbasedelectricityproducersadversely.

Assessing efficacy of policies—Anumberofresearcherssuggestthatprivatelandownersarebyandlargeunresponsivetopropertytaxandcapitalgainsprovisions,andthatforestpropertytaxprogramsareonlymodestlysuccessfulinachievingtheirgoals(Greeneandothers2005,Jacobsonandothers2009,Kilgoreandothers2007).Manyauthorshavefoundthatlandownersarelargelyunawareoftheexistenceofincentivesordonotunderstandhowincentivesmightapplytothem.Forexample,Butler(2008)based

245chAPTeR 10. Forest Biomass-Based Energy

onlandownerresponsestotheForestService’sNationalWoodlandOwnerSurvey,concludedthatnotalllandownersareprice-responsive.Factorssuchasmaintainingforestlandforaestheticsorwildlifeconservation,aswellamovementtowardssmallerownerships,mightberesponsibleforthispriceunresponsiveness.Nevertheless,ataggregatelevel,theseincentivebasedpoliciesresultinincreasedwelfare,asshownbyHuang(2010)whofoundthatwhencombinedwithinvestmentintechnology,theycanresultinoverallpositiveoutcomesfortheSouth’seconomyandhouseholdwelfare.

Beachandothers(2005)andGreeneandothers(2005)foundthatnonindustrialprivateforestownersmoreoftenrespondtotargetedgovernmentprogramsthantomarketpricesorotherfinancialincentives.Theyalsosuggestthattechnicalassistance,cost-sharepayments,anddirectcontactwithprofessionalforestersornaturalresourcespecialistsmoreoftenthannotsucceedinchangingforestmanagementdecisions.AuthorslikeHaines(2002)andArnold(2000)haveproposedintegratinglanduseplanning(andwoodybiomass-basedenergyuse)intoextensionprograms.Educatinglandownersandthegeneralpublicaboutthebenefitsderivedfromcleanerenergysourcessuchaswoodybiomasswillimproveandincreaseinterestinforestbiomassutilization.Mayfieldandothers(2008)indicatedthateducationandcommunityengagementplayimportantrolesinthedevelopmentofcleanertechnologylikewood-basedenergy.JoshiandArano(2009)agreethatlandownersarelargelyunawareofincentiveprogramsavailabletothem,andthusarguethatmuchremainstobedonetoencourageprivateinvestmentinforestryactivities.Inlightofthesefindings,extensionandoutreachsupportprogramsbecomeimportantforincreasingtheacceptabilityofwood-for-energytechnologyoptionsandimprovingforestandlandmanagementpractices.

Sustainability

Thedevelopmentofforestbioenergysystemspresentsnewopportunitiesaswellasrisks.Manysustainabilityconcernsarebeingraisedaboutwoodbiomassutilizationforenergy.Theseconcernsrangefromproductionprocessestoconsumptionprocesses—feedstockproduction,harvesting,transport,conversion,distribution,consumption,andwastedisposal—andincludeissuesofjobcreationandsocietalbenefitdistribution.

Forestsprovidenotonlywoodfortraditionalusesbutalsoseveralecosystemservicessuchascleanwaterandbiodiversity(Amacherandothers2008,Neary2002,Stupakandothers2007).Thesepotentialimpacts—groupedintoproductivity,waterquality,andbiodiversitycategories—aredescribedindetailbelow.

Productivity—Theforestflooraccumulatesnitrogen,phosphorus,calcium,andothernutrientsthatareessentialfortreegrowth.Unliketraditionaltimberharvests,biomassharvestsforenergyproductioncouldimpactregenerationandsiteproductivityunlessproductivityreductionsassociatedwithsitequalityareoffsetbyfertilization.Studiesofforestbiomassbasedenergyproductionraiseconcernsregardingsoilcompactionandrutting(Reijnders2006),decreasedamountsofdecayingwoodonforestedlandscapes,changesinthechemicalandphysicalenvironmentofsoils(Astromandothers2005),increaseduseofagrochemicals(Fritscheandothers2006),increasedsoilerosion(Burger2002),andnutrientloss(Burger2002).Theseissuessuggestaneedforintensifiedsiteandoff-sitemonitoringwhereforestmanagementisintensified.

Themachineryusedtobuildroadsandinfrastructureforbiomassharvestingbiomassforenergymightbedifferentfromwhatwasusedintraditionaltimberharvestingandharvestingmighttakeplaceinareaswheretimberharvestingistraditionallynotundertaken,resultinginnewroadsorpathways(Lalandothers2011,SmithandLattimore2008).Frequencyofharvestsforbiomassremovalcouldalsobegenerallyhigherthanfortraditionalharvests,andsecondoperationsorharvestresiduecollectionsmightresultinvehiclere-entryatthesite(Lalandothers2009).Intensiveremovalsofforestbiomassforbioenergymightreducesoilcarbonandorganicmattertolevelsthatareinadequateforsustainingforestproductivity.Hope(2007)throughtheirsiteexperimentsinBritishColumbiaobservedthatstumpremovaldecreasesthesoilstockofcarbonby53percent,nitrogenby60percent,andphosphorusby50percent;andthattheforestfloordepthwasdecreasedby20to50percent.Pengandothers(2002)throughtheirstudyinCentralCanadareportedthatwhole-treeharvestingproducesanadditional32percentlossofsoilcarboncomparedtoconventionaltreeharvesting.SmithandLattimore(2008),whilediscussingpotentialenvironmentalimpactsofbioenergyharvestingonbiodiversitylistcontributingactivitiessuchasmechanicaldamagetoresidualtrees;expandedroadnetworks;increasedremovalsandlandusechangesthatmightimpactproductiveanddiverseecosystems.ScottandDean’s(2006)LongTermSiteProductivityStudyfoundthatwhole-treeharvestingreducedproductivityonover75percentofthestudyblocksinSouthbyanaverageof18percent.However,theyalsofoundthataone-timeapplicationofnitrogenandphosphorusfertilizermaintainedproductivityandincreasedproductivitybyanadditional47percentabovethestem-onlyharvestlevel.

Harvestingslashremainingafterconventionalharvestingofloblollypine(Pinustaeda)intheCoastalPlainalongtheGulfofMexicoreducedsiteproductivity,decreasingsoilorganicmatterandassociatednutrientsby18percent(Scott

246The Southern Forest Futures Project

andDean2006).Reductionsofjackpine(P.banksiana)heightgrowthof18percentonwhole-treeharvestedplotsinsitesofQuebecregionofCanadawereattributedtolowersoilmoistureandnutrientavailability(Thiffaultandothers2006).Toavoiddecreasedproductivityfromsoilcompactionduringbiomassharvesting,JanowiakandWebster(2010),afterreviewingthestateofknowledgeregardingtheimpactsofintensiveforestrywithrespecttoissuesrelevanttobioenergyproduction,recommendedusingmachinerythatissimilartowhatisusedinconventionalharvesting.

Water quality—Increasedbiomassharvestingactivitiesforawood-to-energymarketmighthaveadverseimpactsonwaterqualityinstreams,rivers,andlakes.Increasedroadconstructionrequiredforwoodybiomassharvestingmightleadtosoilerosion,highsoilmoisture,andincreasedrunoffandsedimentsfromforestroadsandlandings(JanowiakandWebster2010).Increasedmachineryusemightalsoimpactthewatertableattheharvestsite,leadingtoimpermeablesoilsfromcompaction.Removalofyoungertreesandloppingandtoppingduringbiomassharvestsmightdecreaseleafsurfacearea,resultingindecreasedtranspirationandinterception(Lalandothers2009).

Machinere-entryatharvestsitesmightincreasesedimentationandflowlevelsinwaterways,increasingthechancesofsedimentmovementintowetlandsthroughdamagederosioncontrolfeatures.Frequentharvestsmightincreasesuspendedsolidsandaluminumlevelsinwater,raisingacidificationlevelsandnegativelyimpactingfishandotheraquaticorganisms(Grigal2000).Inaddition,woodybiomassharvestingadjacenttowaterwaysmightincreasetheprobabilityofhigherwatertemperatures,disturbedchemistry,andreducedclaritythatwoulddamagebiologicalcommunitiesandalterecologicalprocesses(JanowiakandWebster2010).AustandBlinn(2004)reviewedbestmanagementpracticesfortimberharvestingandsitepreparationintheeasternUnitedStatesintermsofwaterqualityandproductivityresearchduringforthetimeperiodbetween1982and2002,andconcludedthateffectsofharvestingonforesthydrologyarehighlyvariableacrosssitesandtimeperiods.However,harvestingimpactsonforesthydrologyarelikelytobegreaterimmediatelyfollowingharvest,withtherecoverytopreharvestconditionstakingupto5years

Biodiversity—Theextractionofadditionalbiomassforbioenergycoulddegradehabitatsbeyondtherangeofnaturalvariabilityandproducenegativeeffectsonsomespecies(JanowiakandWebster2010).Increasedaccessandintensityofharvestcanalsofragmenthabitatsandadverselyimpactwildlifecorridors(Fletcherandothers2011,Lalandothers2009).Naturaldisturbancessuchasfire,wind,andpestoutbreakspermitacontinuoussupplyofdeadwoodinunmanagedforests.Intensiveforestmanagementleadingto

removalofstumpsmightreducetheamountofdeadwoodthatisconsideredessentialtoforestecosystemsandprovideshabitatsfordifferentorganisms(Humphreyandothers2002).

Theremovalofresiduesandstumpsmightnegativelyaltertheentiresoilfaunacommunityandstructureofthefoodweb,harmingsmallmammals,andreducingecologicalniches,therebyloweringdiversityandnumbersofinvertebratessuchasspidersandpredatoryinsects(Eckeandothers2002).Thereisalsoachanceofinsectsorotherwood-colonizingspeciesgettingtrappedinwoodburntforfuel.

However,intensiveforestmanagementpracticescontrollingpestsanddiseasecanalsoimproveforesthabitats.Forexample,certainfungispeciescauserootandbuttrotdiseasetoconifersworldwide.Stumpremovalassociatedwithwhole-treeharvestinggenerallyleadstosignificantreductionsintheareaofthestumpcolonizedbythesefungi,reducingtheriskofattack(ThorandStenlid2005).Conversely,theharvestingofforestresiduesandstumpswouldalsofavorpioneeringspeciesofflorathatarealsomoretolerantofexposureandsoilmoisturelevels.Whenallbiomassisremoved,growththesespeciesismorevigorous,particularlytheinvasivenonforestfieldvegetation,which—ifitisnotmanaged—mightleadtoareductionintimberproductivity(WalmsleyandGodbold2010).ScottandDean(2006)alsosuggestthatintheGulfCoastalPlain,soilanalysescouldbeusedtoidentifyharvestingsitesatriskofharvesting-inducedproductivityloss,andfertilizationtreatmentcouldbeusedtoavoidproductivitylosscausedbywhole-treeharvesting.

Meta-analysisbyFletcherandothers(2011)ofstudiesoncropsbeingusedorconsideredintheUnitedStates,foundthatvertebratediversityandabundancearegenerallylowerinbiofuelcrophabitatsrelativetothenon-crophabitats.Theyfounddiversityeffectsarelowerforpineandpoplarthanforcorn,andbirdsofconservationconcernexperiencelowernegativeeffects.However,forminimizingimpactsofbiofuelcropsonbiodiversity,theysuggestpracticesthatreducechemicalinputs,increaseheterogeneitywithinfields,anddelayharvestsuntilafterbirdbreeding.ManyofthesepracticesmightalreadybeincorporatedunderintensivemanagementregimesinSouthandcouldbeincorporatedintobiomassproductionsystemsandmanagementplanningusedtoavoidadverseimpactonforestedlandscapes.

Resultsofdirectandindirectlandusechangetoagriculturalrowsystemscanalsocausehabitatloss(Jonsell2007).Thelandusechangefromnaturalforeststoforestplantations,includingshortrotationwoodycrops,isofthegreatestconcernfromanecologicalpointofview(Wearandothers2010).Interventionsfocusedonecologicalrestorationorfuelreductionactivitiesassociatedwithwoodybiomasswouldalsobenefitwildlifehabitat(JanowiakandWebster2010).

247chAPTeR 10. Forest Biomass-Based Energy

However,biomassproductionmightalsohavenegativeconsequencesunlesscoordinatedwithbreedingandnestingseasonsandmaintainingcoverforoverwinteringsmallmammalspecies(Bies2006).

Justasimportanttosoutherners,butlessquantifiable,arethepotentialimpactsofincreasedwoodybiomassremovalsonquality-of-lifeissues:aesthetics,communityrelationships,andappreciationofforestlandasanintegralpartofthesocialandphysicallandscape(Wearandothers2010).

DiScuSSioN AND coNcluSioNS

markets

Ourdemandanalysisshowsthattheconsumptionrequirementsforwoodfrombioenergymarketswouldnotlikelybemetbyurbanwoodwastealone,andthatdemandsforwoodybiomasswouldrequireharvestingresiduesorbiomassfromtimbermarketsby2013(fig.10.2).Pricesforallforestproductswouldlikelyincrease,resultinginincreasedreturnstoforestlandowners.Pricechangesaregreaterthanchangesinremovalsorinventory,consistentwithaninelasticmarketresponse.Althoughremovalsareresponsivetopricechanges(higherremovalsathigherprices),forestinventorieswillalsodependonfactorslikeforestgrowth,afforestationofagriculturalorpasturelands,intensivemanagementofforestland,andincreasedplantationsoffastgrowingspecies.Themodelsusedforouranalysisattempttoaccountforthesefactors,butfutureconditionsarecloudedbylargeuncertaintiesaboutdemandandsupplyfactors.Consistentwithchapter4,themarketmodelindicatesthatincreasedpricesunderbioenergyfutureswouldmitigatethelossofforestlandinthefuture.Plantedpineforestareaisthemostresponsivetothesepricetrends.Bioenergydemandswouldresultindeclininguseoftimberbyforestindustry,withimpactsmorepronouncedforpulp-basedindustriesthanforsawtimberindustries.

Withhighdemandforwoodybiomass,sawtimberindustriescouldalsobeimpacted,althoughatlowerlevels.ThisprojectionisconsistentwithstudiesbyAulisiandothers(2007)andGalikandothers(2009),whofoundthatpulpwoodmarketsaremorelikelytobeimpactedbyanemergingwood-basedenergyindustry.Furthermore,Aulisiandothers(2007)suggestthatsawmillsmightbenefitfromthehigherpricespaidbybioenergymarketsforsecondaryproductssuchassawdustandchips.Oursimulationindicatesthatathighlevelsofbioenergydemands,thesoftwoodsawtimberindustrywouldeventuallybeadverselyimpacted.

Forestindustrymightalsofaceincreasedfeedstockpricesfortheirpulpandsawtimberoperations.Inthelongrun,price

increasesforsoftwoodnonsawtimberarelessseverethanforhardwoodnonsawtimberbecausepineplantationareacanrespondquickly,andhardwoodplantationsarenotcommonintheSouth.

Increasedforestproductivitycouldmoderatepricegrowthandresultinhigherratesofremovalsandinventories.AlthoughproductivityhasgrownsubstantiallyintheSouthasaresponsetointensivemanagementandgeneticimprovements,productivityeffectsarenotlimitedtosoftwoods.Priceincreasesaresmallestwithproductivitygrowthstrategiesthatextendtoallmanagementtypesalongwithanincreaseinshortrotationplantations.Expandingdemandsforbioenergywouldnotnecessarilyreducethelevelsofforestinventories.Oursimulationsshowthatanincreaseindemandfromtheenergyindustry,coupledwithproductivityincreases,couldleadtohigherlevelsofbothremovalsandinventory.

Withmanagementandtechnologicaladvancements,woodybioenergymarketscouldresultinincreasesininventory,removals,forestacreage,andreturnstolandowners.Southernforestscouldbemanagedtoproducesubstantiallymoretimberforbioenergyandotherforestproductsconsistentwiththeprojectionsshowninchapter9.

Theseresultsindicatethatthefuturetrajectoryofsouthernforestswilldependonthestateofwood-basedenergymarketsasinfluencedbytechnologicaldevelopmentsandcostconsiderations.Marketswillalsobeshapedbyotherunknowns,includingtheamountofrenewableenergythatwillcomefromsolar,wind,andothersourcesofrenewableenergy.Similartoanynascentindustry,thefutureofwood-basedenergywilldependonanumberofuncertainties,includingthecostsofproduction,technologicalbreakthroughs,thegovernmentpoliciesthatsupportrenewabletechnologies,forestproductivitydecisions,andtheexpansionofshortrotationwoodycrops.Alongtheselines,ifcarbonmarketsemergeandcarboncreditsfordisplacingfossilfuelswithwoodybioenergyareconsidered,morechangesinforestmanagementandshortrotationwoodycropsmightbeexpected,butinclusionofthesedetailsisbeyondthescopeofthischapter.

Technologies

Onthewoodybiomass-basedenergytechnologyfront,thereisnoemergentfavorite.Evensupposedly“low-hangingfruits”suchasco-firingfacesignificantchallenges,suchasboilerashdeposition,corrosion,andfeedstockselection.FederalandStategovernments,alongwithforestindustry,areinvestingresearchdollarsintothesetechnologieswithhopesofcommercialsuccess.Differenttypesofwoodybioenergyoccupydifferentplacesonthecostfeasibilityspectrum.Woodpelletsarealreadyfeasibleundercurrent

248The Southern Forest Futures Project

markets,whilebiofuelsarenoteconomicallycompetitiveatthecurrentleveloftechnology.

Advantagesofwoodpelletizationincludehighenergy-to-weightratio,lowercapitalrequirements,abilitytooperateproductionfacilitiesatavarietyofscalesbasedondemandorwoodsupply,lowercostsofshippingthefinalproduct,easierhandling,and,mostofall,highdemandinEuropeancountries.Conversely,preferredconversiontechnologiesforwood-basedfuelsremainlargelyuncertainbecauseofthehighcostofproduction,project-specificfactors,andenvironmentalstandards(McKendry2002).Thehighunitcostofwoodybiomass-basedenergyislargelyattributedtohighharvestingandtransportcosts;forexample,makingwoodybiomass-basedethanolcompetitivewithstarch-basedethanolorgasolinewouldrequirereducedcapitalcoststhroughtechnologyimprovements,reducedfeedstockcosts(primarilyfromyieldimprovement),anddensificationofwoodattheharvestsitetolowerharvestingcosts(AlavalapatiandLal2009,Dwivediandothers2009,Jacksonandothers2010).Thecostoftransportfromthesupplysource(forexample,theforest)totheconversionplantalsodeterminestheviabilityofthemanufacturedproduct(electricity,heat,orliquidfuels).Overcomingthissignificantchallengerequiresthatplantshaveeasyaccesstothewoodsupplyandtodistributionmarkets.

Nospeciesgrouphasemergedasafavoriteforwoodybioenergy.Bothsoftwoodsandhardwoodscanbeco-firedwithcoal,usedincombinedheatingandpowerplants,andcompressedforwoodpelletproduction(SpelterandToth2009).Evidencesupportingaclearpreferenceforhardwoodorsoftwoodspeciesforwood-basedliquidfuelislackingaswell.ZhuandPan(2010)suggestthatsulfitepretreatmenttoovercomelignocellulosesrecalcitranceprocessholdspromiseforwoodybiomassconversion,especiallyforsoftwoodspecies.However,softwoodscontainmoreligninthanhardwoods(GalbeandZacchi2002),meaningthattheconversiontoliquidfuelsmightbelessefficientinsoftwoodsbecauseligninneedstoberemovedduringthepretreatmentprocess.EvenZhuandPan(2010)notedthatinoneofthemostcommonpretreatmentprocesses(acidcatalyzedsteamexplosion)sugarwassuccessfullyrecoveredfromhardwoods(forexample,65to80percentrecoveryfrompoplars)comparedtolessencouragingresultsforsoftwoodspecies.

Regardlessoftheconversiontechnologyemployed,acontinuouslong-termflowofwoodwouldbeneededasrawmaterial.BecausemanySouthernStatesareemphasizingrenewabletechnologies,newco-firingandcombinedheatandpowerplantsandethanolbiorefineriesarelikelytobeestablishedinthefuture.Expansionofthissector—morewoodybiomass-basedenergyplantsorexpansionofexisting

facilitiestoachieveeconomiesofscale—willbeassociatedwithanincreaseinthedemandforwoodfiber.TomeettheburgeoningdemandforwoodybiomassforenergyestimatedbySRTSsimulationruns,merchantabletimberandsmall-diameterwoodwouldberequiredinadditiontologgingresiduesorwoodwastesuchassawdust,shavings,andchipsfromotherwoodproductmanufacturingprocesses.

Technologicaladvancementsareessentialformakingwoodenergycompetitivewithothersourcessuchasgasolineandcoal.Policysupportforwoodybiomass-basedenergy,anascentindustry,mighthelpinattainingcommercialviabilityanddevelopingamaturemarket.

Policies

Availablepolicyinstrumentshaveadvantagesanddisadvantages(AguilarandSaunders2010,Alavalapatiandothers2009).Financialincentivesallowdirectlymeasurementsoftheirimpactonprices.Moreover,theycanpromotesustaineddemandforandsupplyofenergyfeedstocks,andcanlowerthecapitalcostsofinvestments.However,fundingfortheseprogramsisvulnerableduringhardeconomictimes.Regulationssuchasrenewableportfoliostandardsareeasytoadopt,andproducersgenerallybearincurredcosts.However,thesetypesofpoliciesmightsufferfrominflexibility,andinformationneededforeffectivetargetingcanbeelusive.Abetteroptionmightbetodevelopasuiteofpolicyoptionsgearedtowardswoodybiomass-basedenergy.Forexample,anEnvironmentalandEnergyStudyInstituteproposal(2010)suggeststhatinuncertaintimes,anintegratedpolicyapproachforbioenergymightinclude:inventoryingbioenergyresourcesandmarketsanddevelopingalongrangebioenergyplan;developingsustainablefeedstockproductionguidelines;developinglocallyappropriatefeedstocksandconversiontechnologies;creatingeasementprogramsforsustainablefeedstockproduction;establishingminimumrenewablefuelstandards;enactingalowcarbonfuelstandard;promotinginteragencycooperationandcooperationwithotherStates;providingtaxincentivesforproducersandretaildistributors;andleveragingStateresourcesthroughFederalandprivatepartnerships.

Givencurrentlogisticalandtechnologicalchallenges,developingamaturewoodybiomass-basedenergymarketwouldlikelydependonsomelevelofgovernmentsupportthatincludesfinancialincentivesandotherregulatoryandsupportpolicies.Indeed,suchpolicieshaveemergedinvariousforms,includingresearchanddevelopment,consumptionincentives(suchasfueltaxreductions),productionincentives(suchastaxincentives,directsubsidies,andloanguarantees),andmandatoryconsumptionrequirements.Theseandfuturepoliciesforproduction,conversiontechnologies,andmarkets

249chAPTeR 10. Forest Biomass-Based Energy

anddistributioncanpotentiallyimpacttheproductionandcommercializationofwoodybiomassforenergy,butmightalsoaltertheecosystemservicesprovidedbyforests.

Financialincentivesmightfacilitatetheincreasedproductionanddiversionofwoodybiomass,likelyincreasingwooddemandandaddingtotheprofitabilityoflandownersandthoseengagedinwood-to-energyconversion.StandimprovementandrestorationactivitiesprioritizedbyStates,suchaslandrecoveryandcostshareprograms,mighthelplandownersmakethelong-terminvestments.Supportforweedandpestmanagement,suchasthepinebarkbeetlepreventionprograminVirginia,mightalsoincreasebiomassavailability.Bestmanagementpracticesandharvestingguidelinesdevelopedespeciallyforbioenergycouldrestrictwoodavailabilitybyreducingharvestingimpactsthroughminimumtillageandreducedapplicationsoffertilizersandpesticides;protectingwildlifecorridors,riparianzones,andothersensitiveareas;andadoptingwildlifehabitatenhancementmeasuressuchasleavingpatchesofundisturbedareas,promotingcertainspeciesmixturesandcroprotations,andretainingquantitiesofharvestresidues,litter,deadwood,snags,anddentrees.

Researchandtechnologygrants,coupledwithsubsidies,couldhelpdevelopcurrentandfuturewood-for-energymarkets.Otherfinancialincentivestargetingenergyproducersmightalsofavortheprogressofnewconversiontechnologiesandtheintegrationofnewtechnologieswithexistingones.Policyeffortsgearedtowardsdevelopmentofgasificationtechniquesoranintegratedprocesswithbiomass-basedelectricitygenerationwouldlikelyincreasetheproductionofwoodybiomass-basedenergy.Technologicalinnovationschanneledtowardsreducingfeedstockproductioncostsaresignificant,astheyarelikelytospikethedemandofwood,luringawaysomesharefromtraditionalforestindustries.

Awidearrayofpolicyinstrumentsgearedtowardsimprovingthemarketinganddistributionofwoodybiomass-basedbioenergy—suchasapplianceefficiencystandards,mandatoryutilitygreenpoweroptions,andrenewableportfoliostandards—couldplayapivotalroleindecidingwherethewood–to-energyconversionplantsanddistributioncentersaresetup.Becauselocationofinfrastructuretranslatestoincreaseddemandforforestbiomass,theconditionsofnearbyforestsmightchange.

Economicandtechnologicaluncertaintiesmightinfluencetheimpactsthatcurrentandfuturepolicieshaveonsouthernforests.However,thegreatvarietyofpolicies—andthemultitudeofwaysinwhichthecaninteract—confoundseffortstopredicttheirpotentialeffects.Policiesaddressingotherenvironmentalandsocietalbenefitsassociatedwithforestsandwood-to-energymarketsmightalsoalterthe

impactsofbioenergypolicies.Inparticular,emergenceofcarbonmarketscouldspurfurthergrowthinthewood-to-energyindustry,butformulatingapolicymechanismtorealizecarbonpaymentsisahugechallenge.Forexample,undertheCarbonCapandTradeBillcurrentlyintheU.S.Congress,manyforestlandownerswouldnotqualifyforcarbonmarketbenefitsbecausetheywouldnotgetcreditforexistinglevelsofcarbonsequestration,norcouldtheymeetsequestrationpermanencestandards.

Sustainability issues

Productionofwoodybiomassforbioenergycanhelpmeetenergygoals,butcanalsostimulateacceleratedharvesting,withpotentiallynegativeimplicationsforforestecosystems.Reductionofsoilnutrientsaswellassoilcompactionwouldlikelydecreaseforestproductivity.Intensivebiomassremovalmightaffectaquaticcommunitiesbyincreasingerosion,runoff,andwaterwaysedimentation.Intensiveforestmanagementmightalsodegradeforesthabitatconditions,negativelyaffectingfloraandfaunaandreducingbiodiversity.Landusechangesfromnaturalforesttomanagedplantationsmightadverselyaffectimperiledspeciesincertainlocations(seechapter14).However,changesfromagriculturalsystemstoforestsmightimprovehabitatconditions.Further,thehighgradingofstandsgenerallyobservedduringsometimberharvestingmightbeeliminatedwithbiomassharvesting.

Intensivewoodybiomassremovalmightalsohavesomenegativeimplicationsforcommunityrelationships,aesthetics,andpublicperceptionsaboutforestlandasanintegralcomponentofsouthernecosystems.Potentialimpactsonforestecosystemsatlocalandregionallevelsismostlikelytochallengetheforestrycommunitytoconsultnewresearchfindingslikethosesummarizedbelowandupdateexistingcertificationsystemswithguidelinesonhow,when,andwherewoodybiomassremovalsshouldbeconducted:

JanowiakandWebster(2010)provideaframeworkthatincludesadaptingmanagementtositeconditions,increasingforestedlandwherefeasible,usingbiomassharvestsasarestorationtool,evaluatingthepossibilityoffertilizationandwoodashrecycling,andretainingdeadwoodandstructuralheterogeneityforbiodiversity.

Hennenbergandothers(2009)suggestcreatingprotectedareasthatcanbeusedtoconserverelevantportionsofbiodiversity.

Lalandothers(2011)similarlyreportasetofninecriteriathatarenecessarytothepursuitofsustainablewoodybiomassextraction:reforestationandproductivecapacity,landusechange,biodiversityconservation,soilquality

250The Southern Forest Futures Project

anderosionprevention,hydrologicprocesses,profitability,communitybenefits,stakeholderparticipation,andcommunityandhumanrights.

Fletcherandothers(2011)recommendthefollowingstrategiestoensurehabitatforbiodiversity:reducingharvestingimpactsthroughminimumtillageandreducedfertilizersandpesticides;protectingwildlifecorridors,riparianzones,andothersensitiveareas;andadoptingwildlifehabitatenhancementmeasuressuchasleavingpatchesofundisturbedareas,promotingcertainspeciesmixturesandcroprotations,andretainingquantitiesofharvestresidues,litter,deadwood,snags,anddentrees.

Multi-stakeholdereffortssuchastheRoundtableonSustainableBiofuelsandtheGlobalBioenergyPartnershipforbiomassharvestingarealreadyunderway.TheRoundtableonSustainableBiofuelsandGlobalBioenergyPartnershipareintheprocessofdevelopingglobalprinciplesandcriteriafordevelopingasetofglobal,science-basedcriteriaandindicatorscoupledwithfieldexamplesandbestpractices(includingbenchmarks)forbioenergysustainability.

Inadditiontotheoverallscaleofbiomassproduction,thelocationandmethodsofwoodybiomassharvestswouldaffectthehealth,vitality,andecologicalfunctionofsouthernforests.ExistingcertificationsystemssuchastheForestStewardshipCouncil,AmericanTreeFarmSystem,andSustainableForestryInitiativehavecriteriaandindicatorstosafeguardsiteproductivity,waterquality,andbiodiversitybutsomeadditionalindicatorsmayberequiredforwoodybiomassharvests.Forexample,anindicatormightbeneededtoaddressharvestresiduesleftonsitetomaintainhabitatforsmallmammals,insects,reptiles,andamphibians.Levelsofnecessaryresidueswoulddependonsite-specificconditions,althoughgeneralguidelinescouldbeformulatedatStateorSouthwidelevels.Similarly,erosion-preventingindicators(suchasthoseprohibitingharvestsonshallowandnutrient-poorsoils)wouldneedtoconsiderspecificsoilconditionssuchasdepthofsoils,nutrientconditions,andregenerationpotential.

Biomassharvestingatthelevelsexploredinthischaptercouldhavenegativeimplicationsforfutureforestconditionsandecosystemservicesflowingfromsouthernforestsincludingwater(chapter13)andwildlife/biodiversity(chapter14).Theseoutcomesdependontheamountandlocationofharvesting,butperhapsmorecriticallyonthemanagementstrategiesused.Theresearchdescribedaboveindicatesthatmanagementsystemscanbedesignedtomitigatedamagestovariousecosystemservices.Ofcourse,thisrequiresmanagementplanningthataddressesmanagementobjectivesinthecontextoflocalconditions.

Theneedforadditionalbestmanagementpracticesorotherguidelineswilldependontherateofdevelopmentofthebioenergysector,whichishighlyuncertain.Theacceptabilityoftheseapproacheswoulddependontheprocessofupdatingbestmanagementpractices,whichwouldideallycombinepublicinvolvementwithascience-basedprocessatappropriatescales(AlavalapatiandLal2009).

SummARy

Wood-basedenergymarketshavebeenproposedasameanstoensuresustainableforests,enhanceenergysecurity,promoteenvironmentalquality,andrealizesocialbenefits.However,severalcomplexissuesareinfluencingtheabilitytodevelopthesemarketsineconomicallyefficient,environmentallybenign,andsociallydesirableways.Theseissuesincludebiomassavailabilityorsupply,marketcompetitivenessandtechnologydevelopment,supportiveFederalandStatepolicies,tradeoffswithtraditionalforestproductindustries,sustainability,andecosystemintegrity.

Thischapterhasfocusedonfourinterrelateddimensionsofbioenergyfuturesrelatedtosouthernforests:markets,technologies,policies,andsustainability.Acrossthevariousbioenergyscenarios,thesenewdemandswouldaffectthemarketsforallwoodproductsandleadtopriceincreasesfortimberproductsandhigherreturnstoprivatelandowners.Thedegreetowhichotherwoodconsumersareimpactedwoulddependonexpansioninsupply,whichinturndependsonintensificationofforestmanagementandchangesinlanduse(primarilyfromagriculturaltoforestry).

Newdemandsforbioenergywillbedeterminedbyexpansionofexistingtechnologies—forexample,pelletsandco-firingwithcoal—butmorecriticallyontheemergenceofnewtechnologiesthatarenotyeteconomicallyviable.AcceleratedtechnologicaldevelopmentsandreducedproductioncostsmightbeachievedthroughvariouspoliciesatFederalandStatelevels.ThesustainabilityissuessurroundingbioenergyaredefinedbythenegativeexternalitiesassociatedwithacceleratedharvestingintheSouth.Researchindicatesthatmanagementsystemsandstandardscanbedesignedtoprotectthesevalues,defininganotherinterfacewithfuturepolicy.

Allofthesedimensionsarefraughtwithuncertainty.Marketfuturesdependondemandsfortraditionalwoodproductsandonenergyprices.Technologydevelopmentdependsonresearchfundingbutalsoonunknowablelimitstotechnicalfeasibilityandtheprospectofeconomicreturns.Policydevelopmentishighlyuncertainandfundamentallyengagestradeoffsamongenergy,environment,community,andother

251chAPTeR 10. Forest Biomass-Based Energy

societalobjectives.Therelationshipbetweenharvestingatunprecedentedlevelsandforestecosystemservicesisnotfullyknown.

Thischapterlaysoutabroadrangeofpotentialdevelopmentsandmanagementoptions.Clearlythepathtosustainablebioenergyfutureswillinvolveenhancingknowledge,monitoringchanges,updatingexpectations,andnarrowingtheoveralluncertaintyaboutfutureprospects.Theseissueswilllikelybethefocusofforestassessmentsforyearstocome.

kNoWleDGe AND iNFoRmATioN GAPS

Thefutureofwoodybioenergymarketsdependsonamultitudeoffactorssuchassupplyandavailabilityofwoodbiomass;advancementsinconversiontechnologies;improvementsinharvesting,collection,storage,densification,preprocessing,andtransportation;productpricesandelasticities;infrastructure;andproductivityincreases.

Determiningmanysuchfactorswithconfidencewasdifficult,andouranalysistoolswerelimited.Thebioeconomicmodelthatweemployedformarketanalysiscalculatesharvestlevels,relatedprices,inventory,andacreageasfunctionsofinputdemands,productivityincreases,andvariousassumedparameters.Theserelationshipsarenotknownwithhighprecision,andthemarketanalysiscannotaccountforeveryeconomicvariableandstrategicresponsetotheimpactsonenergymarkets.Applyingthemodelstoalargenumberofscenariosprovidesinsightsintotherangeofpotentialmarketresponsesinthefuture.Improvedestimatesofthevarioussupply,demand,andproductionrelationshipswouldenhanceforecastsoffuturemarketdevelopments.What’smore,high-demandbioenergyfuturesimplyimportanttradesbetweenwoodproductssectorswithimplicationsforemployment,income,andruraleconomiesthatwarrantadditionalstudy.

Ourstylizedapproachtoconstructingconsumptionprojectionsfortheregionleavescertainaspectsofbioenergyfuturesunaddressed.Importantly,questionsregardinginterregionalandinternationaltradeinwoodproductsthatcouldaffecttheultimateexpressionofregionaldemandswerenotdirectlyaddressed.TrademodelingwasbeyondthescopeoftheFuturesProjectandexplainswhyabroadrangeoffutureswasevaluated—i.e.,tocaptureareasonablerangeoffuturesregardlessofthemechanismsleadingtodemandoutcomes.Thenationalassessmentoftimberandwoodproductsmarketscontainedinthe2010RPAAssessment(Inceandothers2011)explorestradeundersimilarscenariosandservesasausefulreference.

Woodybioenergyproductionmightbemorecostcompetitiveunderagreenhousegasreductionstrategythatassignsamarketvaluetocarbonemissions,ineffectallowingsocialandenvironmentalbenefitstobeaccruedtowoodybioenergy.Thisapproachcouldmonetizethebenefitsgainedthroughgreenhousegasreduction,andthosegainscouldbetradedinacarbonmarket.Althoughlikelytospurfurthergrowthinabioenergyindustry,thecarbonmarketapproachhasyettoformulateaviablemechanismforrealizingcarbonpaymentstoforestlandowners.

Thelegaldefinitionsofwhatqualifiesas‘forestbiomass’underdifferentpolicydescriptionswouldgeneratelargevariationsinforestbiomassutilizationandthereforerequireresearchattention.Forexample,theEnergyIndependenceSecurityAct(2007)providesarestricteddefinitionbyexcludingbiomassfrompublicforestsandnaturallyregeneratedprivateforests.Conversely,the2008FarmBillprovidesacomprehensivedefinitionforforestbiomass.

Estimatesofthevolumeofwoodymaterialthatcanusedforenergyproductionatsecondarywoodproductsmanufacturingfacilitiesareimpreciseandbasedonvaryingassumptionsaboutproductionfacilitiesandper-unitproductionpotential.Alsoneedingresearchattentioniscomprehensiveanalysesofshortrotationwoodycropsthatcanbemadeavailableforenergyuse;landusetradeoffsofshortrotationwoodycropswithagriculture,pastures,andforestland;andpotentialforpine-switchgrassandotheragroforestrysystemstoexpand.Productivitygainsfromchangingthegeographicrangeofagricultureandwoodybiomassfeedstocksandimprovingmanagementisanotherresearchareathatwarrantsfurtherattention,asisdocumentinglandownerwillingnesstoparticipateinforestbiomassmarketsandincorporatingthisinformationintowoodybiomasssupplyfunctions.

Additionalresearchisneededtoidentifysustainabilityissuessurroundingwoodybiomassutilizationforenergy.Thefocusoftheseconcernsrangesfromproductionprocessestoconsumptionprocesses(feedstockproduction,harvesting,transport,conversion,distribution,consumption,andwastedisposal)tojobcreationandsocietalbenefitdistribution.Futureresearchwouldnecessarilyfocusonthetradeoffsarisingfromwoodybiomassdiversionforenergyuse,andthelevelatwhichwoodybioenergymightbecomeecologically,economically,andsociallyundesirable.

AckNoWleDGmeNTS

TheauthorswishtothankRobertJ.Huggett,Jr.,andKarenL.Abt,U.S.DepartmentofAgriculture,ForestService,SouthernResearchStation;andFrederickJ.Rossi,Schoolof

252The Southern Forest Futures Project

ForestResourcesandConservation,UniversityofFlorida,fortheirsupportandinsights.ThanksarealsoduetoCarolWhitlockandShawnaReidfromtheU.S.DepartmentofAgricultureForestService,SouthernResearchStation,fortechnicaleditsandhelpinpreparingGISmapsrespectively.

liTeRATuRe ciTeDAbt,R.C.;Abt,K.L.2013.Potentialimpactofbioenergydemandonthesustainabilityofthesouthernforestresource.JournalofSustainableForestry.32(1-2):175-194.

Abt,R.;Abt,K.;Cubbage,F.;Henderson,J.2010.Effectofpolicy-basedbioenergydemandonsoutherntimbermarkets:acasestudyofNorthCarolina.BiomassandBioenergy.34(12):1679–1686.

Abt,R.C.;Cubbage,F.W.;Abt,K.L.2009.Projectingsoutherntimbersupplyformultipleproductsbysubregion.ForestProductsJournal.59(7–8):7–16.

Abt,R.;Cubbage,F.;Pacheco,G.2000.SouthernforestresourceassessmentusingtheSubregionalTimberSupply(SRTS)model.ForestProductsJournal.50(4):25–33.

Adams,D.M.;Alig,R.;Callaway,J.M.[andothers].1996.TheForestandAgriculturalSectorOptimizationModel(FASOM):modelstructureandapplications.Res.Pap.PNW–RP–495.Portland,OR:U.S.DepartmentofAgricultureForestService,PacificNorthwestResearchStation.60p.

Aguilar,F.X.;Saunders,A.2010.Policyinstrumentspromotingwood-to-energyusesinthecontinentalUnitedStates.JournalofForestry.108(3):132–140.

Alavalapati,J.;Lal,P.2009.Woodybiomassforenergy:anoverviewofkeyemergingissues.VirginiaForests.Fall:4–8.

Alavalapati,J.R.R.;Hodges,A.W.;Lal,P.[andothers].2009.Southernbioenergyroadmap.ResearchTrianglePark,NC:SoutheastAgricultureandForestryEnergyResourcesAlliance(SAFER),SouthernGrowthPolicesBoard.127p.

Amacher,A.J.;Barrett,R.H.;Moghaddas,J.J.;Stephens,S.L.2008.Preliminaryeffectsoffireandmechanicalfueltreatmentsontheabundanceofsmallmammalsinthemixed-coniferforestoftheSierraNevada.ForestEcologyandManagement.255(8–9):3193–3202.

Arnold,C.L.2000.Landuseistheissue,butislandgranttheanswer?JournalofExtension.38(6).http://www.joe.org/joe/2000december/comm1.html.[Dateaccessed:June15,2010].

Astrom,M.;Dynesius,M.;Hylander,K.;Nilsson,C.2005.Effectsofslashharvestonbryophytesandvascularplantsinsouthernborealforestclear-cuts.JournalofAppliedEcology.42:1194–1202.

Aulisi,A.;Sauer,A.;Wellington,F.2007.Treesinthegreenhouse:whyclimatechangeistransformingtheforestproductsbusiness.WorldResourcesInstituteReport.74p.

Aust,W.;Blinn,C.2004.ForestrybestmanagementpracticesfortimberharvestingandsitepreparationintheEasternUnitedStates:anoverviewofwaterqualityandproductivityresearchduringthepast20years(1982-2002).Water,Air,andSoilPollutionFocus.4:5–36.

Beach,R.;Pattanayak,S.;Yang,J.[andothers].2005.Econometricstudiesofnon-industrialprivateforestmanagement:areviewandsynthesis.ForestEconomicsandPolicy.7:261–281.

Belanger,R.;Hedden,R.;Lorio,P.1993.Managementstrategiestoreducelossesfromthesouthernpinebeetle.SouthernJournalofAppliedForestry.17:150–154.

Bies,L.2006.Thebiofuelsexplosion:isgreenenergygoodforwildlife?WildlifeSocietyBulletin.34:1203–1205.

Bingham,M.F.;Prestemon,J.P.;MacNair,D.A.;Abt,R.C.2003.MarketstructureinU.S.southernpineroundwood.JournalofForestEconomics.9:97–117.

Blottnitz,V.H.;Curran,M.A.2007.Areviewofassessmentsconductedonbio-ethanolasatransportationfuelfromanetenergy,greenhousegas,andenvironmentallife-cycleperspectives.JournalofCleanerProduction.15(7):607-619.

Burger,J.A.2002.Soilandlong-termsiteproductivityvalues.In:Richardson,J.;Bjorheden,R.;Hakkila,P.[andothers],eds.Bioenergyfromsustainableforestry:guidingprinciplesandpractice.Dordrecht,TheNetherlands:KluwerAcademicPublishers:165–189.

Butler,B.J.2008.FamilyforestownersoftheUnitedStates,2006.Gen.Tech.Rep.NRS–27.NewtownSquare,PA:U.S.DepartmentofAgricultureForestService,NorthernResearchStation.72p.

Carter,D.;Langholtz,M.;Schroeder,R.2007.BiomassresourceassessmentpartI:availabilityandcostanalysisofwoodybiomassforGainesvilleregionalutilities.Gainesville,FL:UniversityofFlorida,SchoolofForestResourcesandConservation.122p.

DatabaseofStateIncentivesforRenewablesandEfficiency.2010.summaryTables:Financialincentivesforrenewableenergy/energyefficiencyandrules,regulationsandpoliciesforrenewableenergy/energyefficiency.http://www.dsireusa.org/summarytables/index.cfm?EE=1&RE=1.[Dateaccessed:June12,2010].

DeLaTorreUgarte,D.;English,B.;Jensen,K.[andothers].2006.Economicandagriculturalimpactsofethanolandbiodieselexpansion.StudyreportbyUniversityofTennessee,AgriculturalEconomics.http://beag.ag.utk.edu/pub/Ethanolagimpacts.pdf.[Dateaccessed:July14,2010].

DeLaTorreUgarte,D.G.;Ray,D.E.2000.BiomassandbioenergyapplicationsofthePOLYSYSmodelingframework.BiomassandBioenergy.18(14):291–308.

DeLaTorreUgarte,D.G.;Ray,D.E.;Tiller,K.H.1998.UsingthePOLYSYSmodelingframeworktoevaluateenvironmentalimpactsinagriculture.In:Robertson,T.;English,B.C.;Alexander,R.R.,eds.Evaluatingnaturalresourceuseinagriculture.Ames,IA:IowaStateUniversityPress:151–172.

Dwivedi,P.;Alavalapati,J.2009.Stakeholders’perceptionsonforestbiomass-basedbioenergydevelopmentintheSouthernU.S.EnergyPolicy.37:1999–2007.

Dwivedi,P.;Alavalapati,J.R.R.;Lal,P.2009.CellulosicethanolproductionintheUnitedStates:conversiontechnologies,currentproductionstatus,economics,andemergingdevelopments.EnergyforSustainableDevelopment.13(3):174–182.

Dwivedi,P.;Bailis,R.;Bush,T.;Marinescu,M.2011.QuantifyingGWIofwoodpelletproductionintheSouthernUnitedStatesanditssubsequentutilizationforelectricityproductionintheNetherlands/Florida.BioenergyResearch:1-13.

Ecke,F.;Löfgren,O.;Sörlin,D.2002.PopulationdynamicsofsmallmammalsinrelationtoforestageandstructuralhabitatfactorsinnorthernSweden.JournalofAppliedEcology.39:781–792.

EnergyIndependenceandSecurityAct.2007.H.R.6.110thU.S.Congress.http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=110_cong_bills&docid=f:h6enr.txt.pdf.[Dateaccessed:June16,2010].

EnergyInformationAdministration.2007.Energyandeconomicimpactsofimplementingbotha25-percentrenewableportfoliostandardanda25-percentrenewablefuelstandardby2025.ReportSR/OIAF/2007–05.http://www.eia.doe.gov/oiaf/servicerpt/eeim/index.html.[Dateaccessed:July14,2010].

253chAPTeR 10. Forest Biomass-Based Energy

EnergyInformationAdministration.2009.Annualenergyoutlook.ReportDOE/EIA–0383(2009).http://www.eia.doe.gov/oiaf/aeo/pdf/0383(2009).pdf.[Dateaccessed:January12,2010].

EnergyInformationAdministration.2010a.Annualenergyoutlook.ReportDOE/EIA–0383(2010).http://www.eia.doe.gov/oiaf/aeo/index.html.[Dateaccessed:June12,2010].

EnergyInformationAdministration.2010b.Annualenergyoutlook.Year-by-yearreferencecasetables(2007-2035).ReportDOE/EIA–0383(2010).http://www.eia.doe.gov/oiaf/aeo/aeoref_tab.html.[Dateaccessed:June14,2010].

EnergyInformationAdministration.2010c.Netsummercapacityofplantscofiringbiomassandcoal,2007and2008.http://www.eia.doe.gov/cneaf/solar.renewables/page/trends/table1_9.pdf.[Dateaccessed:June15].

EnergyInformationAdministration.2010d.Electricpowergenerationandfuelconsumptionandstocksmonthlytimeseriesfile.FormEIA–923.http://www.eia.doe.gov/cneaf/electricity/page/eia906_920.html.[Dateaccessed:June12,2010].

EnvironmentalandEnergyStudyInstitute.2010.Developingandadvancedbiofuelsindustry:Statepolicyoptionsanduncertaintimes.http://www.eesi.org/021610_state_biofuel_paper.[Dateaccessed:June15].

Eriksson,E.;Gillespie,A.;Gustavsson,L.[andothers].2007.Integratedcarbonanalysisofforestmanagementpracticesandwoodsubstitution.CanadianJournalofForestResearch.37(3):671-681.

Faaij,A.;Domac,J.2006.Emerginginternationalbioenergymarketsandopportunitiesforsocio-economicdevelopment.EnergyforSustainableDevelopment.1:7–19.

Fletcher,R.;Robertson,B.A.;Evans,J.[andothers].2011.Biodiversityconservationintheeraofbiofuels:risksandopportunities.FrontiersinEcologyandtheEnvironment.9:161–168.

Fox,T.;Jokela,E.;Allen,H.2007.ThedevelopmentofpineplantationsilvicultureintheSouthernUnitedStates.JournalofForestry:337–347.

Fritsche,U.R.;Hunecke,K.;Schulze,F.;Wiegman.K.2006.Sustainabilitystandardsforbioenergy.Darmstadt,Germany:WWFGermany,Oeko-Institut.www.wwf.de/fileadmin/fm-wwf/pdf_neu/Sustainability_Standards_for_Bioenergy.pdf.[Dateaccessed:July6,2010].

Galbe,M.;Zacchi,G.2002.Areviewoftheproductionofethanolfromsoftwood.AppliedMicrobiolgyBiotechnology.59:618–628.

Galik,C.;Abt,R.;Wu,Y.2009.ForestbiomasssupplyintheSoutheasternUnitedStates—implicationsforindustrialroundwoodandbioenergyproduction.JournalofForestry.107(2):69–77.

Gan,J.;Mayfield,C.2007a.Benefitstolandownersfromforestbiomass/bioenergyproduction.In:Hubbard,W.;Biles,L.;Mayfield,C.;Ashton,S.,eds.2007.Sustainableforestryforbioenergyandbio-basedproducts:trainerscurriculumnotebook.Athens,GA:SouthernForestResearchPartnership,Inc:225-228.

Gan,J.;Mayfield,C.2007b.Theeconomicsofforestbiomassproductionanduse.In:Hubbard,W.;Biles,L.;Mayfield,C.;Ashton,S.,eds.2007.Sustainableforestryforbioenergyandbio-basedproducts:trainerscurriculumnotebook.Athens,GA:SouthernForestResearchPartnership,Inc:213-216.

Gan,J.;Smith,C.T.2006a.AcomparativeanalysisofwoodybiomassandcoalforelectricitygenerationundervariousCO2emissionsreductionsandtaxes.BiomassandBioenergy.30(4):296-303.

Gan,J.;Smith,C.T.2006b.AvailabilityofloggingresiduesandpotentialforelectricityproductionandcarbondisplacementintheUSA.BiomassandBioenergy.30(12):1011–1020.

Gorte,R.W.;Ramseur,J.L.2008.Forestcarbonmarkets:potentialanddrawbacks.ReportpreparedbyCRSforCongress.Washington,DC:CRSRL34560.http://www.nationalaglawcenter.org/assets/crs/RL34560.pdf.[Dateaccessed:July16,2010].

Greene,J.L.;Daniels,S.;Kilgore,M.A.[andothers].2005.Existingandpotentialincentivesforpracticingsustainableforestryonnonindustrialprivateforestlands.FinalreporttotheNationalCommissiononScienceforSustainableForestry.http://www.srs.fs.usda.gov/econ/data/forestincentives/ncssf-c2-final-report.pdf.[Dateaccessed:July15,2010].

Grigal,D.2000.Effectsofextensiveforestmanagementonsoilproductivity.ForestEcologyandManagement.138:167–185.

Guo,Z.;Sun,C.;Grebner,D.Q.2007.UtilizationofforestderivedbiomassforenergyproductionintheU.S.A.:status,challenges,andpublicpolicies.InternationalForestryReview.9(3):748–758.

Gustavsson,L.;Holmberg,J.;Dornburg,V.[andothers].2007.Usingbiomassforclimatechangemitigationandoilreduction.EnergyPolicy.35(11):5671-5691.

Haines,A.L.2002.Blendedteaching:landuseplanningeducationinWisconsinandlessonslearned.JournalofExtension.40(5):5IAW2.http://www.joe.org/joe/2002october/iw2.shtml.[Dateaccessed:June12,2010].

Hanson,C.;Yonavjak,L.;Clarke,C.[andothers].2010.SouthernForestsfortheFuture.IssueBrief2.Washington,DC:WorldResourcesInstitute:1-16.

Hardie,W.;Narayan,T.A.;Gardner,B.L.2001.Thejointinfluenceofagriculturalandnonfarmfactorsonrealestatevalues:anapplicationtothemid-Atlanticregion.AmericanJournalofAgriculturalEconomics.83(1):120–132.

Hennenberg,K.;Dragisic,C.;Hewson,J.[andothers].2009.Thepowerofbioenergy-relatedstandardstoprotectbiodiversity.ConservationBiology.24(2):412–423.

Hill,J.;Nelson,E.;Tilman,D.[andothers].2006.Environmental,economic,andenergeticcostsandbenefitsofbiodieselandethanolbiofuels.ProceedingsoftheNationalAcademyofSciences.103(30):11,206–11,210.

Hope,G.2007.Changesinsoilproperties,treegrowth,andnutritionoveraperiodof10yearsafterstumpremovalandscarificationonmoderatelycoarsesoilsininteriorBritishColumbia.ForestEcologyManagement.242(2–3):625–635.

Huang,M.Y.2010.RegionalimpactsofbioenergypoliciesintheSoutheasternUnitedStates:acomputablegeneralequilibriumanalysis.UniversityofFlorida.134p.Ph.D.dissertation.http://purl.fcla.edu/fcla/etd/UFE0041091.[Dateaccessed:June26,2011].

Hughes,E.2000.Biomassco-firing:economics,policyandopportunities.BiomassandBioenergy.19:457–465.

Humphrey,J.;Davey,S.;Peace,A.[andothers].2002.LichensandbryophytecommunitiesofplantedandseminaturalforestsinBritain:theinfluenceofsitetype,standstructureanddeadwood.BiologyConservation.107(2):165–180.

Ince,P.J.;Kramp,A.D.;Skog,K.E.[andothers].2011.U.S.forestproductsmodule:atechnicaldocumentsupportingtheForestService2010RPAAssessment.ResearchPaperFPL-RP-662.Madison,WI:U.S.DepartmentofAgricultureForestService,ForestProductsLaboratory.61p.

Jackson,S.;Rials,T.;Taylor,A.M.[andothers].2010.Woodtoenergy:astateofthescienceandtechnologyreport.UniversityofTennesseeandU.S.EndowmentforForestryandCommunitiesReport.Knoxville,TN:UniversityofTennessee.56p.

Jacobson,M.G.;Greene,J.L.;Straka,T.J.[andothers].2009.InfluenceandeffectivenessoffinancialincentiveprogramsinpromotingsustainableforestryintheSouth.NorthernJournalofAppliedForestry.33(1):35–41.

Janowiak,M.;Webster,C.2010.Promotingecologicalsustainabilityinwoodybiomassharvesting.JournalofForestry.108(1):16–23.

254The Southern Forest Futures Project

Johnson,T.G.;Bentley,J.W.;Howell,M.2009.TheSouth’stimberindustry—anassessmentoftimberproductoutputanduse,2007.Resour.Bull.SRS–164.Asheville,NC:U.S.DepartmentofAgricultureForestService,SouthernResearchStation.52p.

Jonsell,M.2007.Effectsonbiodiversityofforestfuelextraction,governedbyprocessesworkingonalargescale.BiomassandBioenergy.31(10):726–732.

Joshi,S.;Arano,K.G.2009.Determinantsofprivateforestmanagementdecisions:astudyonWestVirginiaNIPFlandowners.ForestPolicyandEconomics.11(2):118–125.

Kilgore,M.A.;Greene,J.L.;Jacobson,M.G.[andothers].2007.Theinfluenceoffinancialincentiveprogramsinpromotingsustainableforestryonthenation’sfamilyforests.JournalofForestry:184–191.

Kumarappan,S.;Joshi,S.;MacLean,H.2009.Biomasssupplyforbiofuelproduction:estimatesfortheUnitedStatesandCanada.BioResources.4(3):1070–1087.

Lal,P.;Alavalapati,J.;Marinescu,M.[andothers].2009.Sustainabilityindicatorsforwoodybiomassharvesting.ThefutureofwoodbioenergyintheUnitedStates:definingsustainability,status,trendsandoutlooksforregionaldevelopmentvolumebyPinchotInstituteforConservation.http://www.pinchot.org/bioenergy_paper.[Dateaccessed:July12,2010].

Lal,P.;Alavalapati,J.;Marinescu,M.[andothers].2011.DevelopingsustainabilityindicatorsforwoodybiomassharvestingintheUnitedStates.JournalofSustainableForestry.30(8):736–755.

Liao,X.;Zhang,Y.2008.AneconometricanalysisofsoftwoodproductionintheU.S.South:acomparisonofindustrialandnonindustrialforestownerships.ForestProductsJournal.58(11):69–74.

Lucier,A.2010.FatalflawinManomet’sbiomassstudy.TheForestrySource.September2010:4p.

ManometCenterforConservationSciences.2010.MassachusettsBiomassSustainabilityandCarbonPolicyStudy:ReporttotheCommonwealthofMassachusettsDepartmentofEnergyResources.Walker,T.,ed.NaturalCapitalInitiativeReportNCI-2010-03.Brunswick,ME:ManometCenterforConservationSciences.182p.

Mayfield,C.A.;Foster,C.D.;Smith,C.T.[andothers].2008.Opportunities,barriers,andstrategiesforforestbioenergyandbio-basedproductdevelopmentintheSouthernUnitedStates.BiomassandBioenergy.31(9):631–637.

Mckendry,P.2002.Energyproductionfrombiomass(part2):conversiontechnologies.BioresourceTechnology.83(1):47–54.

Mendell,B.;Lang,A.H.;Tydor,T.2010.EconomicandregionalimpactanalysisofthetreatmentofbiomassenergyundertheEPAgreenhousegastailoringrule.CommissionedbyNationalAllianceofForestOwners.Athens,GA:ForiskConsulting.32p.

Mercer,E.;Lal,P.;Alavalapati,J.2011.CompetitivenessofcarbonoffsetprojectsonnonindustrialprivateforestlandsintheUnitedStates.In:Alig,R.J.,ed.Economicmodelingofeffectsofclimatechangeontheforestsectorandmitigationoptions:acompendiumofbriefingpapers.Gen.Tech.Rep.PNW-GTR837.Portland,OR:U.S.DepartmentofAgricultureForestService,PacificNorthwestResearchStation:119–160.

Milbrandt,A.2005.AgeographicperspectiveonthecurrentbiomassresourceavailabilityintheUnitedStates.Tech.Rep.NREL/TP–560–39181.http://www.nrel.gov/docs/fy06osti/39181.pdf.[Dateaccessed:June16,2010].

Neary,D.G.2002.Hydrologicvalues.In:Richardson,J.;Bjorheden,R.;Hakkila,P.[andothers],eds.Bioenergyfromsustainableforestry:guidingprinciplesandpractice.Dordrecht,TheNetherlands:KluwerAcademicPublishers:190–215.

Neary,D.;Zieroth,E.2007.Forestbioenergysystemtoreducethehazardofwildfires:WhiteMountains,AZ:BiomassandBioenergy.31:638–645.

Nesbit,T.;Alavalapati,J.R.R.;Dwivedi,P.;Marinescu,M.2011.Economicsofethanolproductionusingfeedstockfromslashpine(Pinuselliottii)plantationsintheSouthernUnitedStates.SouthernJournalofAppliedForestry.35(2):61-66.

OakRidgeNationalLaboratory.2008.Bioenergyconversionfactors.bioenergy.ornl.gov/papers/misc/energy_conv.html.[Dateaccessed:June10,2010].

O’Laughlin,J.2010.Accountingforgreenhousegasemissionsfromwoodbioenergy:responsetotheU.S.EnvironmentalProtectionAgency’scallforinformation,includingpartialreviewoftheManometCenterforConservationSciences’biomasssustainabilityandcarbonpolicystudy.ReportNo.31.Moscow,ID:PolicyAnalysisGroup,CollegeofNaturalResources.UniversityofIdaho.58p.

OklahomaDepartmentofAgriculture,Food,andForestry.2008.Southernpinebeetlethreatdrawscost-sharefunds.http://www.ok.gov/~okag/forms/forestry/pinebeetle.pdf.[Dateaccessed:April16,2011].

Pattanayak,S.;Murray,B.;Abt,R.2002.Howjointisjointforestproduction?Aneconometricanalysisoftimbersupplyconditionalonendogenousamenityvalues.ForestScience.48(3):479–491.

Pattanayak,S.K.;Abt,R.C.;Sommer,A.J.[andothers].2005.Forestforecasts:doesindividualheterogeneitymatterformarketandforestlandscapeoutcomes?ForestPolicyandEconomics.6(3–4):243–260.

PelletFuelsInstitute.2010.Fuelavailability.http://pelletheat.org/pellets/fuel-availability/.[Dateaccessed:June16,2010].

Peng,C.;Jiang,H.;Apps,M.J.;Zhang,Y.2002.EffectsofharvestingregimesoncarbonandnitrogendynamicsofborealforestsincentralCanada:Aprocessmodelsimulation.EcologicalModeling.155:177–189.

Perlack,R.D.;Wright,L.L.;Turhollow,A.F.[andothers].2005.Biomassasfeedstockforabioenergyandbioproductsindustry:thetechnicalfeasibilityofabillion-tonannualsupply.DOE/GO–102995–2135.JointreportbyU.S.DepartmentofAgricultureandDepartmentofEnergy.OakRidge,TN:OakRidgeNationalLaboratory.58p.

Prestemon,J.P.;Abt,R.C.2002.Timberproductssupplyanddemand.In:Wear,D.;Greis,J.,eds.SouthernForestResourceAssessment.Gen.Tech.Rep.SRS–53.Asheville,NC:U.S.DepartmentofAgricultureForestService,SouthernResearchStation:299–326.

Reijnders,L.2006.Conditionsforthesustainabilityofbiomassbasedfueluse.EnergyPolicy.34(7):863–876.

RenewableFuelsAssociation.2010.BiorefineryLocations.http://www.ethanolrfa.org/bio-refinery-locations/.[Dateaccessedaccessed:January7,2010].

Rossi,F.J.;Carter,D.R.;Abt,R.C.2010.WoodybiomassforelectricitygenerationinFlorida:bioeconomicimpactsunderaproposedRenewablePortfolioStandard(RPS)mandate.FinalreportpreparedforFloridaDepartmentofAgricultureandConsumerServices,DivisionofForestry.Gainesville,FL:SchoolofForestResourcesandConservation.98p.

Sample,V.A.2009.Ensuringsustainabilityinthedevelopmentofwood-basedbioenergyintheU.S.South.http://www.pinchot.org/gp/SouthRegionalMeeting.[Dateaccessed:July25,2010].

Schaberg,R.H.;Aruna,P.B.;Cubbage,F.W.[andothers].2005.EconomicandecologicalimpactsofwoodchipproductioninNorthCarolina:anintegratedassessmentandsubsequentapplications.JournalofForestPolicyandEconomics.7(2):157–174.

Schmidt,K.M.;Menakis,J.P.;Hardy,C.C.[andothers].2002.Developmentofcoarse-scalespatialdataforwildlandfireandfuelmanagment.RMRS-GTR87.FortCollins,CO:U.S.DepartmentofAgriculture,ForestService,RockyMountainResearchStation.41p.

255chAPTeR 10. Forest Biomass-Based Energy

Scott,D.;Dean.T.2006.Energytrade-offsbetweenintensivebiomassutilization,siteproductivityloss,andameliorativetreatmentsinloblollypineplantations.BiomassandBioenergy.30:1001–1010.

Searchinger,T.;Heimlich,R.;Houghton,R.A.[andothers].2008.UseofU.S.croplandsforbiofuelsincreasesgreenhousegasesthroughemissionsfromlandusechange.Science.319(5867):1238-1240.

Sendek,P.E.;Abt,R.C.;Turner,R.J.2003.TimbersupplyprojectionsfornorthernNewEnglandandNewYork:integratingamarketperspective.NorthernJournalofAppliedForestry.20(4):175–185.

Shrum,T.2007.Greenhousegasemissions:policyandeconomics.ReportpreparedfortheKansasEnergyCouncil.Topeka,KS:KansasEnergyCouncil.78p.http://kec.kansas.gov/reports/GHG_Review_FINAL.pdf.[Dateaccessed:July22,2010].

Siry,J.P.;Cubbage,F.;Malmquist,A.2001.PotentialimpactofincreasedmanagementintensitiesonplantedpinegrowthandyieldandtimbersupplymodelingintheSouth.ForestProductsJournal.51(3):42–48.

Siry,J.P.;Robison,D.J.;Cubbage,F.W.2004.Economicreturnsmodelforsilviculturalinvestmentsinyounghardwoodstands.SouthernJournalofAppliedForestry.28:179–184.

Smith,T.;Lattimore,B.2008.Potentialenvironmentalimpactsofbioenergyharvestingonbiodiversity.ForestEncyclopediaNetwork.http://www.threats.forestencyclopedia.net/t/t450/?searchterm=mitigating.[Dateaccessed:April22,2011].

Speight,M.1997.Forestpestsinthetropics:currentstatusandfuturethreats.In:Watt,A.;Stork,N.;Hunter,M.,eds.Forestsandinsects.London:ChapmanandHall.406p.

Spelter,H.;Toth,D.2009.NorthAmerica’swoodpelletsector.Res.Pap.FPL–RP–656.Madison,WI:U.S.DepartmentofAgricultureForestService,ForestProductsLaboratory.21p.

Stupak,I.;Asikainen,A.;Jonsell,M.[andothers].2007.Sustainableutilizationofforestbiomassforenergy—possibilitiesandproblems:policy,legislation,certification,andrecommendationsandguidelinesintheNordic,Baltic,andotherEuropeancountries.BiomassandBioenergy.31(10):666–684.

Susaeta,A.;AlavalapatiJ.;Carter,D.2009.ModelingimpactsofbioenergymarketsonnonindustrialprivateforestmanagementintheSoutheasternUnitedStates.NaturalResourceModeling.22(3):345–369.

Susaeta,A.;Alavalapati,J.;Lal,P.;Matta,J.2010.AssessingpublicpreferencesforforestbiomassbasedenergyintheSouthernUnitedStates.EnvironmentalManagement.45(4):697–710.

Thiffault,E.;Paré,D.;Bélanger,N.[andothers].2006.Harvestingintensityatclear-fellingintheborealforest:impactonsoilandfoliarnutrientstatus.SoilScienceSocietyofAmericanJournal.70:691–701.

Thiffault,E.;Pare,D.;Brais,S.;Titus,B.2010.IntensivebiomassremovalsandsiteproductivityinCanada:areviewofrelevantissues.ForestryChronicle.86(1):36–42.

Thor,M.;Stenlid,J.2005.HeterobasidionannosuminfectionofPiceaabiesfollowingmanualormechanizedstumptreatment.ScandinavianJournalofForestResearch.20:154–164.

UnitedStatesDepartmentofAgriculture(USDA)ForestService.2005.AstrategicassessmentofforestbiomassandfuelreductiontreatmentsinWesternStates.RMRS-GTR-149.FortCollins,CO:U.S.DepartmentofAgricultureForestService,RockyMountainResearchStation.17p.

VanLoo,S.;Koppejan,J.2008.Thehandbookofbiomasscombustionandcofiring.London,UK:Earthscan.442p.

Walmsley,J.;Godbold,D.2010.Stumpharvestingforbioenergy—areviewoftheenvironmentalimpacts.Forestry.83(1):17–38.

Walsh,M.E.2008.U.S.cellulosicbiomassfeedstocksuppliesanddistribution.http://ageconsearch.umn.edu/bitstream/7625/2/U.S.%20Biomass%20Supplies.pdf.[Dateaccessed:July5,2010].

Wear,D.;Abt,R.;Alavalapati,J.[andothers].2010.TheSouth’soutlookforsustainableforestbioenergyandbiofuelsproduction.ThePinchotInstituteReport.20p.

Wear,D.;Greis,J.;Walters,N.2009.TheSouthernForestFuturesProject:usingpublicinputtodefinetheissues.Gen.Tech.Rep.SRS–115.Asheville,NC:U.S.DepartmentofAgricultureForestService,SouthernResearchStation.17p.

Zhu,J.Y.;Pan,X.J.2010.Woodybiomasspretreatmentforcellulosicethanolproduction:technologyandenergyconsumptionevaluation.BioresourceTechnology.100(13):4992–5002.

257chAPTeR 10. Forest Biomass-Based Energy

Weassigned36percentofthegrid’soutputtotheSouthernStates—Texas,Oklahoma,Arkansas,andLouisiana.

AnEastCentralAreaReliabilityCoordinationAgreementstate,nowmergedintoReliabilityFirstCorporation,servesportionsofKentuckyandVirginia.Weassigned18percentofthegrid’soutputtothoseStates.

WesternTexasalsoreceivessomeelectricityfromtheWesternElectricityGrid.RatherthanapportioningpartoftheWesternGridsupply,weinflatedtheelectricitysupplyofthemajorsupplierintheState(ElectricReliabilityCouncilofTexas)by6percent.

Usingthepercentageapportioningdescribedabove,wescaleddataonthetotalU.S.annualelectricitysalesoutlinedinEnergyInformationAdministration(2010)referencecasescenariototheSouthernStates.

Weestimatedtheshareofwoodybiomass-basedelectricity,usingthesamedatasource(EnergyInformationAdministration2010)fortheelectricitygrids.Thesedataarebrokendownbythetypeofrenewableenergy—includingconventionalhydroelectric,geothermal,woodandotherbiomass,biogenicmunicipalwaste,wind,photovoltaic,andsolarthermalsources;butexcludingethanol,netelectricityimports,andnonmarketedrenewableenergyconsumptionforgeothermalheatpumps,buildingsphotovoltaicsystems,andsolarthermalhotwaterheaters—andscaleddownaccordingtothepercentagefactorsusedtoderivetotaloutputfortheSouth.Usingtotalelectricitydemanded,totalrenewableelectricity,andtotalwoodyandotherbiomass-basedelectricitydata,wederivedtheshareofrenewablesinthetotalelectricityportfoliooftheregion,aswellastheshareofwood-basedbiomasselectricitywithintherenewables.FollowingGalikandothers(2009),weassumedthatallenergyfromwoodandotherbiomasssourcesoutlinedbytheEnergyInformationAdministration(2010)iscompletelycomposedofwood.ThewoodybiomassdemandspecifiedaselectricityinbillionkWhwasconvertedtowoodybiomassinthermalenergytermsoftrillionBtu.FollowingRossiandothers(2010),weusedaconversionfactorof13,648BtuperkWh,whichisthestandardelectricitytothermalenergyconversionfactor(3,412Btuper

Thisappendixaccompanieschapter10.EstimationofthewoodybiomassrequiredforelectricityproductionbeganwithEnergyInformationAdministration(2010)dataonelectricitygeneration,inbillionkilowatthours(kWh),fortheelectricitygridsthatsupplycustomersintheSouthernUnitedStates.Thegrid-basedsalesdataisavailableonlyuntil2035,butweextrapolateditto2050byapplyingtheaveragegrowthratecalculatedoverthefiveprecedingyears.Determiningtheamountofelectricityconsumedinthe13SouthernStatesischallengingbecausetheelectricgridnetworksdonottrackthevolumeofpowerflowingtoorfromindividualareas,nordotheybreakouttheelectricitysalesinformationbyStates.1

We assumed that a fixed percentage of individual grid electricity caters to the South (Galik and others 2009, Rossi and others 2010) and based estimates of that percentage on expert opinions. Our underlying assumption was that the electricity demand storyline will not drastically change, with little alterations in percentages.

TheFloridaReliabilityCoordinatingCouncilandElectricReliabilityCouncilofTexasgridsonlyservecustomersintheSouth,soweassumedthatalloftheirsalesarewithintheSouth.OtherelectricgridscatertocustomersoutsidetheSouthaswell:

TheSoutheastReliabilityCorporationservescustomersthroughoutMissouri,Alabama,Tennessee,NorthCarolina,SouthCarolina,Georgia,andMississippi;aswellasportionsofIowa,Illinois,Kentucky,Virginia,Oklahoma,Arkansas,Louisiana,Texas,andFlorida.ToaccountforsuppliesgoingoutsidetheSouth—mostofMissouriandportionsofIowaandIllinois—wesubtracted16percentofthegridtotalelectricity.

TheSouthwestPowerPoolservescustomersthroughoutKansasaswellasportionsofNewMexico,Texas,Oklahoma,Arkansas,Louisiana,Missouri,andNebraska.

1Personalcommunication,2010.R.J.Robertson,Manager,CustomerRelations.SouthwestPowerPool,415NorthMcKinley,#140PlazaWest,LittleRock,AR72205;andTeresaGlaze,DataAnalyst,SERCReliabilityCorporation,2815ColiseumCentreDrive,Suite500,Charlotte,NC28217.

appeNDIX B. Total Wood Demand for energy estimation

258The Southern Forest Futures Project

kWh)ata25percentlevelofefficiency.ThisiscongruentwiththeWiltsee(2000)studyofbiomass-fuelledpowerplants,whichreportedthetypicalhigherheatingvaluetobeapproximately14,000BtuperkWh(24.4percentefficiency).

Toaccountforconversionefficiencyincreasesresultingfromfactorssuchasincreaseduseofco-firingwithcoalinthefuture,replacingoldercombustionsteamturbineswithgasificationcombinedcycleplants,andtechnologicaladvancestoalltypesofbiomasspowerplants,weassumedagradualincreaseinthermalefficiencyafter2020toamaximumof40percentin2050.WeconvertedBtuvaluestomassingreentonsbyapplyingaconversionfactorof8.6milliongreentonsperBtuoutlinedbytheForestService(2004)forgreenwood(50percentmoisturecontent).Nextweneededtoallocatehowmuchofthetotalbiomassusedforenergyissourcedfromsoftwoodsversushardwoods.Thisischallengingasweight-to-volumeconversionfactorsvarywithstemsizeandspecificgravityofspecies.Galikandothers(2009)estimatedconversionfactorsfortreesofaveragediametersbasedonTimberMart-South2007data.Wefollowedtheirconversionfactors—34.44greentonsperthousandcubicfeetforsoftwoodsand35.98greentonsperthousandcubicfeetforhardwoods.

eSTimATiNG DemAND

Wood-Based liquid Fuels

EstimationofthewoodybiomassrequiredforliquidfuelsproductionbeganwithEnergyInformationAdministration(2010)projectionsofenergyconsumptionbysectorandsource.Weusedthisinformationtodeterminetheshareofcellulosicethanolwithrespecttothetotaldomesticethanolproduction.Whileextrapolatingethanolproductionfrom2036to2050,wepeggedthecornandstarchethanolproductionvalueatthe2035levelandassumedthatincreasedethanolproductionwillcomefromcellulosicsourcesalone.ThisisinsyncwithcurrentRenewableFuelStandardtargetofpeggingcornandstarchethanolproductionatafixedlevelandallowsforincreaseinethanolproductionthroughcellulosicsourcesalone,althoughtheEnergyInformationAdministration(2010)projectionsassumethattheRenewableFuelStandardtargetofcellulosicethanolwillnotbemetby2022.

Weestimatedtotaldomesticcellulosicethanolproduction(inmillionbarrelsperday)basedonpercentagesharedataonestimatesofliquidfuelssupplyanddisposition,andaddeddataforotherbiomass-derivedliquidssuchaspyrolysisoils,biomass-derivedFischer-Tropschliquids,andrenewablefeedstocksusedfortheproductionofgreendieselandgasoline,gatheredfromthesamesource,togettotalliquidfuelsthatcanbeproducedfromwoodorothercellulosicsources(EnergyInformationAdministration2010).

Wescaledcellulosicliquidfuelsdemandatthenationalleveldowntosouthernlevelsbasedontheassumptionthat55percentofthenationaldemandwillbemetbythe13SouthernStates.Becausewoodisahigh-volumelow-valueproduct,transportationcostslimititstransporttoconversionplantsfarfromharvestingareas.Inthislight,55percentisconservative,as57percentofwoodharvestingoccursintheSouth(Hansonandothers2010).

Asuiteoffeedstocks(includingwood,paperandpulpliquors,algae,switchgrass,andagriculturalresidue)canbeusedtoproducecellulosicethanolorotherbio-oils.Becausethefutureofliquidfuelfrombiomasssourcesisuncertainandwedonotknowhowmuchcellulosicethanolandotherbio-oilswillcomefromwoodsources,weassumedthat30percentofthetotalcellulosicfuelsandbio-oilsarefromwood.Weconvertedbarrel-per-daydemandtogallonsperdayaccordingtoOakRidgeNationalLaboratory(2010)protocols,whichdefined1barrelas42gallons.Weconverteddailyconsumptiondatatoannuallevelsbymultiplyingbyafactorof365.242andconvertedgallonsofethanolandbio-oilstogreentonsofwoodusinganethanolyieldcalculator(http://www1.eere.energy.gov/biomass/ethanol_yield_calculator.html),establishingthatagreentonofsoftwoodsproduces40.75gallons,50.4gallonsforhardwoods.Wefurtherconvertedthewooddemandinthousandcubicfeetbyapplyingthevolume-to-weightconversionfactorsdevelopedbyGalikandothers(2009).

Wood Pellets

TheU.S.woodpelletindustryisalreadyestablished,incontrasttothewoodelectricityandwoodfuelsindustries(AlavalapatiandLal2009,SpelterandToth2009).However,toalargeextent,itisbeingdrivenbyEuropeandemand(Gold2009).ThisalongwiththeuseofwoodpelletsfordomesticheatingratherthangridelectricitymightresultinincompleteaccountingbytheEnergyInformationAdministration(2010),whererenewableelectricityproductionestimatesarebasedsolelyonelectricitygridsales.Thispromptedustoaccountforwoodpelletdemandseparatefromwoodbasedelectricitydemand.SpelterandToth(2009)estimatedsouthernpelletplantcapacitytobe1.85milliontonsin2009;basedontheirassessmentthatU.S.plantsoperateatanaverageefficiencyof66percent,weestimatedthedemandforwoodforpelletsinthesouthernregiontobe1.22milliontons.BecausemanyStatesareencouragingtheuseofrenewables,domesticdemandislikelytoincreaseinfuture.Toaccountforexpecteddemandincreaseinfuture,weassumeda0.5-percentannualincreaseinthecapacityofpelletplantsfrom2011onwards.ThecurrentcapacityutilizationofU.S.pelletplantsislowerthancountrieslikeCanada,whichhaveutilizationefficiencyof81percent.SpelterandToth(2009)attributedthistoreasonssuchasnewerplants,normalstartupproblems,andlimits

259chAPTeR 10. Forest Biomass-Based Energy

onfiberavailability.However,theyalsosaythataspelletplantsbecomeolder,theU.S.capacityutilizationisexpectedtoincrease.Toaccountfortechnologicaladvancements,weassumedthatoverallcapacityutilizationincreasesby1percentperyearfrom2015untilitreaches85percent.

harvesting Residues and urban Wood Waste

Currentliterature(Perlackandothers2005,Galikandothers2009,EnergyInformationAdministration2010)indicatesthatharvestingresidues—discardedtreetopsandlimbsgeneratedduringtheharvestingprocess—currentlybeingleftonthegroundcanbeusedaswoodybiomass-basedenergyfeedstocks.Recentanalyses(Galikandothers2009,Rossiandothers2010)suggestthatharvestingresiduescouldbeusedtoavoiddivertingsomemerchantabletimberforenergyproduction.Rossiandothers(2010)alsoarguethattheprojectionsofwoodybiomassdemandforenergyproductionneedtobescaleddownfurthertoaccountforurbanwoodwaste.Forthisreason,wedroppedurbanwoodwastefromthetotalamountofwoodybiomassconsumption.Thisessentiallygivesusthemerchantabletimberthatwillberequiredforenergyproduction(totalwoodybiomassminusurbanwoodwaste).Notethattheresiduefromadditionalharvestingwashandledendogenously.Themodelcalculatessoftwoodandhardwoodharvestingresiduesalongwiththemerchantabletimberthatcanbeharvestedinaparticularyear.Foreachyear,theamountofharvestingresiduesthatcanbemadeavailableisestimatedalongwiththeharvestlevelsofsoftwoodandhardwoodpulpwoodandsawtimber.Becauseitignoresurbanwoodwaste,wenettedouturbanwoodwastefromtotalwoodybiomassconsumptionandfedtheremainderintothemodel.

Theharvestresiduethatcanbeusedforenergyproductiondependsontotalharvestaswellastheresidueutilizationfactor(thepercentageofharvestresiduethatcanbeconvertedtoenergy).Increasedharvestingefficiencycanreducetheavailabilityofforestresidues(Grusheckyandothers2007).Ratherthanhavingaconstantharvestingresidueutilizationfactor—40percentforWalshandothers(2008),45percentforRossiandothers(2010),and50percentforGalikandothers(2009)—weassume45percentin2010,increasingto67percentin2025,andremainingpeggedatthisleveluntil2050.Webelievethatthistrendcharacterizestheeffectsofcurrentharvestefficienciesandtechnologyimprovementsalongwithpotentialdevelopmentsoftheforestresiduesmarket.Becauseforestresidueremovalalsohasthepotentialforadverseimpactsonsiteproductivityandbiodiversity(Lalandothers2009),someStatebiomassharvestingguidelinesareaimedatretainingof10to33percentforestresiduesonharvestingsites(Lalandothers2011).Consequently,weassumethatnotmorethan67percentofharvestresiduesareremovedandutilizedforenergyproduction.

TotalharvestinformationfordifferenttimeperiodsisestimatedthroughanauxiliarySubregionalTimberSupplymodel,(Abtandothers2000),whichcalculatesgrossharvestresidues.Themodifiedmodelusesresidualfactors(Johnsonandothers2009)toestimatesoftwoodandhardwoodharvestingresiduesproducedfordifferentwoodybiomassconsumptionscenarios.Fortheforestsurveyunitsinthisstudy,theharvestingresidualfactorsforsoftwoodrangesfrom0.049to0.161(percubicfootofremovals)forgrowingstock,and0.091and0.357fornongrowingstock,comparedto0.106to0.247forgrowingstockand0.1945and0.3783fornongrowingstockforhardwoods.

Thesubregionalsupplymodelrunallocatesharvestresiduesbasedonspecies(hardwoodversussoftwood)ratherthantohardwoodandsoftwoodproducts(sawtimberversusnonsawtimber).Todistributeresiduestothefourproducts,weusedaverageproductsharesoftheseproductsasinitialparametervaluesandcalculatedtheaverageproductsharesbasedontheTimberProductOutputsdata(Bentley2003;Johnsonandothers2006,2008,2009).Weestimatedtheresiduesat55.51percentforsoftwoodsawtimber,44.48percentforsoftwoodnonsawtimber,39.74percentforhardwoodsawtimber,and60.25percentforhardwoodnonsawtimber.

Wiltsee(1998)estimatedpercapitaurbanwoodwasteat0.203greentonsperyear,whichweused—alongwiththeyearlyestimatesoffuturepopulationoftheSouthernStatesthrough2050fromtheU.S.CensusBureauStatesInterimPopulationProjectionsbyAgeandSexdatasets(http://www.census.gov/population/www/projections/projectionsagesex.html)—tocalculatetheannualamountofurbanwoodwastegeneratedintheregion.Becausesomeurbanwoodwastewillnotbedivertedforenergyuse,wescaledthepercapitaurbanwoodwasteestimationbyautilizationfactorof60percent(Carterandothers2007).

AllocATiNG meRchANTABle TimBeR iNTo FouR PRoDucTS

Todeterminethepercentagesharewithinaspeciesgroup,weallocatedwoodybiomassrequirement(minusharvestingresidues)onlytothepulpwoodmarket,assawtimberandotherhighervalueforestresourcesmightbetooexpensivetobeusedforbioenergyproduction.Thenonsawtimber-basedfeedstockpreferencecanalsobeobservedinarecentstudybyRossiandothers(2010)inFlorida,whichassumedthat88percentofthetotaltimberdivertedforenergycomesfromnonsawtimbersources.However,Perlackandothers(2005)outlinethepossibilitythathighoilpricesandlowtimberpricesmaycreateconditionswherebypulpwoodorevensmallsawtimberresourcescouldbeusedforbioenergy.Weassumedthatnonsawtimberwillbeusedforenergyproductionearlierthanhighvaluesawtimber.However,at

260The Southern Forest Futures Project

higherlevelofwoodybiomassconsumption,wedeterminedhowmuchofthewoodybiomassrequirementexceedswhatcanbemetbynonsawtimber.Wepositthatthisextrarequirementofbiomass(overandabovetheharvestlevelsdepictedbythemodelruns)issourcedbydisplacingsoftwoodsandhardwoodssawtimberfromforestindustries.

Thesubregionalsupplymodelutilizesdiameterdistributionsforeachsubregion,owner,managementtype,andageclasstocalculateproductremovalsandinventoryvolumesbyageclass.Wemodifiedageclassinthesubregionalsupplymodelfromafive-yearperiodtoannuallevelssothatthesupplyresponsecouldbeconsistentwithconsumptiondata.Furthermore,themodelrequiresaspecificcullfactorandadiameterrangethatdetermineshowmuchvolume(ineachproductcategory)contributestononsawtimber.WeusedthecullfactoroutlinedinAbtandothers(2009,2010)anddemarcatedsawtimberversusnonsawtimberbasedondiameteratbreastheight(d.b.h.)definitionsfromtheForestServiceForestInventoryandAnalysisprogram:5–8.9inchesforsoftwoodnonsawtimber,5–10.9inchesforhardwoodnonsawtimber,>9.0inchesforsoftwoodsawtimber,and≥11.0inchesforhardwoodsawtimber.Trees<5inchesd.b.h.areconsideredtobesaplings.

Themodifiedsubregionalsupplymodelrequiresthatconsumptionbeinputaccordingtothesoftwoodandhardwoodcategoriesspecifiedbytheuser.Weapportionedtotalwoodybiomassconsumed(bothforenergyandfortraditionalforestindustryrequirements)foraparticularscenarioamongthehardwoodandsoftwoodsasthestartingpoint.Lookingatroundwoodoutputdataforthepastdecade(Bentley2003;Johnsonandothers2006,2008,2009),weobservedthatthesoftwoodscompriseapproximately70percentofthetotaltimberoutput,comparedto30percentforhardwoods.

Asmostofthetechnologyforwoodybioenergyproductionisinnascentstageandnospeciesgrouphasbeenestablishedasfavored,wefollowedthisgenerictimberoutputtrendandparameterizedtheinitialmodelrunbyassumingthat70percentofwoodusedforenergyorbyindustryissourcedfromsoftwood,andtheremaining30percentisfromhardwoods.