chapter 6 Beam Stresses

Post on 01-Feb-2016

253 views 2 download

Tags:

description

Beam stress (normal stress) etc.moment, normal stress formulamoment of inertia

transcript

1

AER 520Chapter 6 Bending

1.Shear and moment diagram2.Graphic method3.Bending deformation 4.Flexure formula5.Unsymmetric bending

2

6.1 Shear and Moment DiagramsBeam: slender, support loading are perpendicular to the longitudinal axis

3

Determine the internal forces (normal force, shear force and bending moment) on a section passing

through the beam at point C.

Using balance equations: Force balance and moment balance two free body diagrams

4

Sign Convention

• Shear ~ positive direction is denoted by an internal force that causes a clockwise rotation on which it acts.

• Moment ~ positive direction is denoted by and internal moment that causes a compression or pushing on the upper part of the member

5

Shear and Moment Diagrams

• For beams we can draw the shear and moment diagrams as a function of position along the longitudinal axis of the beam.

• Internal normal force will not be considered as most loadings are vertical on a beam and are primarily concerned about shear and bending failures.

6

Support reaction forces: Symmetric structure

Internal shear force and moment: first half

02

02

y

A

PF V

PM M x

Example 6.1

Sign convention: V: clockwise rotation M: Compression on the upper part

7

Internal shear force and moment: the left segment including region BC

0 / 2 0

0 02

y

A

F V P P

LM M Vx P

/ 2

2

V P

PM L x

Example 6.1

8

Support reaction forces:

0

0

0 0

0 0

A C

C A

M F L M

M F L M

Example 6.2

0

0

C

A

MF

LM

FL

Shear and moment in region AB:

0

0

0 0

0 0

y

MF V

LM

M M xL

0

0

MV

LM

M xL

9

Example 6.2

Shear and moment in region BC:

0

00

0 0

0 0

y

MF V

LM

M M x ML

0

0 1

MV

Lx

M ML

A up jump at the middle

dMV

dx

10

Problem 6-12

Point B: pin joint, only vertical force

Support reaction forces: AB

0 6*4 *6 0

0 6 0

A B

y B A

M F

F F F

4kip

10kipB

A

F

F

Support reaction forces: BC

0 8 0y B CF F F 4kipCF

6 ?kip

11

Problem 6-12Free-body diagram:

V

M

6kip

Shear and moment functions:

6kip

6 kip.ft

V

M x

dMV

dx

12

Example 6.5

FA FC

0 *18 36*9 36*12 0

0 *18 36*9 36*6 0

A C

C A

M F

M F

42kip

30kipC

A

F

F

Shear and moment functions:2

30 29

xV x

2

2 * * 30* 02 9 3

x x xM x x

3230

27

xM x x

Support reaction forces:

EXAMPLE: Differences

14

AER 520

Chapter 6 Bending

6.2 Graphical Method for shear and moment diagrams

15

Regions of distributed load

0 0

0 0

y

O

F V V w x x V

M M M w x x k x M V x

2

V w x x

M V x w x k x

slope of = -distributed

the shear load intensity

dVw x

dx

slope of = the shear

the moment

dMV

dx

16

Regions of concentrated force and moment

0 0yF V V F V

For concentrated force: (downward)

V F

For concentrated moment: (clockwise)

00 0OM M M M M

0M M

Same direction of F

0same sign of M

17

Shear and moment diagram

18

Procedure for analysis

• Support reaction forces and moments• Shear diagram:

/ or - ( )dV dx w x V w x dx V F

• moment diagram:

/ ( )dM dx V or M V x dx 0M M

19

Support reaction forces:

0

0

0 0

0 02

y O

O

F F w L

LM M w L

Example 6.9

0

20

2

O

O

F w L

w LM

Shear diagram:

0

0

; 0

/O eF w L F

dV dx w

Moment diagram:2

0 ; 02O e

w LM M

M Vdx

V is positive and decrease to zero;shear diagram: a straight linemoment diagram: parabolic

20

Support reaction forces:

4kipA BF F

Problem 6-4

Shear diagram:

(0) 4; (20) 4

/ 0

V V

dV dx

(0) 0; (20) 0

( )

M M

M V x dx

Moment diagram:

There are four jumps (downward at –2kip)

A B

21

Support reaction forces:

0 *45 2*45 / 2*45 / 3 0

0 *45 2*45 / 2*2*45 / 3 0

E O

O E

M F

M F

Example 6.11

15

30O

E

F

F

Shear diagram:

0

15; 30

/O EF F

dV dx w

V: slope from 0 to –2

To find the cross point where V=0

115 2 0 26.0

2 45

xx x ft

O E

22

Example 6.11

0; 0

/O EM M

dM dx V

Moment diagram:

x=0, slope=15;x=45, slope=-30

The maximum M is at x=26 (V=0)

max

1 26 2615*26 2 26 260

2 45 3M

M Vdx

23

Support reaction forces:

1 68 6 2*6* 2*4*2 /10 4.4kip

2 3

1 68 4 2*6* 6 4 2*4*12 /10 17.6kip

2 3

A

C

F

F

Example 6.13

Shear diagram:

4.4; 0;A DV V

B: downward jump 8kip (FA)

BC: further downward at a slope -w

C: upward jump 17.6kip (FC)

24

Example 6.13

0; 0

( )

A DM M

M V x dx

Moment diagram:

Cross point of the moment:

AB: linear increase at slope 4.4

BC: decrease in the slope of V

dMV

dx

B and C: turning points

B CM M

parabolic

parabolic

cubic

25

Support reaction forces:

2*8*5 /10 8kip

2*8*5 /10 8kip

A

B

F

F

Problem 6-24

4kip/ft upward2

BB

Fw

Shear diagram:

8; 0;

/A BV V

dV dx w

Moment diagram:

0; 0;

/

( )

A BM M

dM dx V

or M V x dx

26

Support reaction forces:

2*8*5 /10 8kip

2*8*5 /10 8kip

A

B

F

F

Problem 6-24

4kip/ft upward2

BB

Fw

Shear diagram:

8; 0;

/A BV V

dV dx w

Moment diagram:

0; 0;

/

( )

A BM M

dM dx V

or M V x dx

28

6.3 Bending Deformation

Symmetric cross-section

Homogeneous material

Subject to a bending moment

Top compress; bottom stretch

Neutral surface: there is no change in length

29

Bending Deformation

Neutral surfaceCompress

Stretch

30

0

0

lim

lim

s

s

s s

sy

y

Normal strain calculation

31

Maximum Strain

max

c

y

max y

c

max

y

c

32

6.4 The Flexure Formula

Applying Hooke’s Law– σ=Eε

max

c

y

max

c

yNormal strain relation:

A linear variation in strain results in a linear variation in stress.

33

From the force equilibrium:

0

0

x

A

F

ydA

It means that the neutral axis is the horizontal centroidal axis

ZM M

34

From the force equilibrium:

0xF

It means that the neutral axis is the horizontal centroidal axis

ZM M

0A

dA max

c

y

0A

ydA

A

M ydF max

A A

yy dA y dA

c

2max

A

M y dAc

35

Flexure Formula

I

Mcmax

2

A

I y dA

I: the moment of inertia of the cross sectional area about the neutral axis

My

I

T

J

J: the polar moment of inertia of the cross sectional area about the center

36

Moment of Inertia Review

Centroid ydA2Moment of Inertia y dA

2Polar Moment of Inertia dA

37

Parallel Axis Theorem

2'

2'

x x y

y y x

I I Ad

I I Ad

x

y

x

y

yd

xd(m 4)

38

Determine the area moment of inertia for the rectangle shown about the axis x’ and about the axis xb.

22 2

2

33 2

2

1

3 12

h

xh

h

h

I y dA y bdy

bhby

2 2

0

33

0

1

3 3

b

h

x

h

I y dA y bdy

bhby

23 32

' 12 2 3bx x y

bh h bhI I Ad bh

39

Composite Shapes

2( )x x yI I Ad

2'

33

2

( )

0.25 6 12[ 6 0.25

12 12

0.25*6 3.125 ]

x x yI I Ad

x

Take away two small blocks

40

Example 6.15Internal moment:

15*3 5 3 *1.5 22.5kNMM

Section property:

2'

3 2

3

( )

12 0.25 0.02 0.25 0.02 0.16

12

10.02 0.3

12

x x yI I Ad

Bending stress:

3

max 6

22.5 10 *0.1712.7MPa

301.3 10

Mc

I

max 12.7MPaD

max

0.1512.7 11.2MPa

0.17B

B

y

c

41

Example 6.16Neutral axis NA:

0.01 0.25*0.02 2 0.1 0.2*0.015

0.25*0.02 2* 0.2*0.015

0.05909

i i

i

y Ay

A

m

Section property:

2'

3 2

3 2

6 4

( )

10.25 0.02 0.25 0.02 0.04909

12

12 0.015 0.2 0.015 0.2 0.04091

12

42.26 10 m

x x yI I Ad

Internal moment about the NA:

2.4*2 1*0.05909 4.859kNMM

Maximum bending stress:

3

max 6

4.859 10 0.140916.2MPa

42.26 10

Mc

I

?

42

Determine the maximum tensile and compressive bending stress in the part

Neutral axis NA:

i i

i

y Ay

A

Section property:

2'( )x x yI I Ad

Bending stress:

Tensile bending stress at the bottom;Compressive bending stress at the top.

My

I

0.0175m

6 40.3633 10 m

43

Flexure Formula1. Internal moment reaction support force shear force moment diagram2. Section property neutral axis parallel axis theorem3. Bending stress coordinate of the position

44

AER 520

Stress Analysis

6.5 Unsymmetric bending

45

Symmetric cross-section

46

Unsymmetric BendingPrincipal axes: y and z

z

My

I

The moments of inertia are the maximumor minimum; see A.4 for detail

Moment applied to the principal axis:

Y axis: y

Mz

I

Z axis:

47

Unsymmetric Bending

cos

sinz

y

M M

M M

Moment arbitrarily applied:

1. Moment divided to two moments:

2. Normal stress calculation:

yz

z y

M zM y

I I

3. Orientation of the neutral axis NA:

0yz

z y

M zM y

I I

tan tanz

y

Iy

z I

48

Example 6.181. Moment divided to two moments

312* 7.2kNM

54

12* 9.6kNM5

z

y

M

M

2. Section properties:

3 3 410.2 0.4 1.067 10 m

12zI

3 3 410.4 0.2 0.2667 10 m

12yI

3. Bending stress:

yz

z y

M zM y

I I

3 3

3 3

7.2 10 0.2 9.6 10 0.12.25MPa

1.067 10 0.2667 10B

3 3

3 3

7.2 10 0.2 9.6 10 0.14.95MPa

1.067 10 0.2667 10C

Z axis is the NA

y axis is the NA

49

Example 6.18

2.25

4.95D

E

MPa

MPa

4. Orientation of neutral axis:

tan tanz

y

I

I

79.4

306.9 ; 53.1

From +z toward +y

50

Calculate the bending stress at A and B

1. The centroid location:

376*12 *6 2 150*12 *75

36.6mm376*12 2 150*12

z

2. Section properties:

800cos( 60 ) 400Nm

800sin( 60 ) 692.82Nmz

y

M

M

3. Bending stress:

yz

z y

M zM y

I I

3 6

692.82 0.15 0.0366400*0.24.38MPa

0.18869 10 16.3374 10A

3 6

400 0.2 692.82 0.03661.13MPa

0.18869 10 16.3374 10B

51

Example 6.191. Internal moment components:

15cos 60 7.5kN M

15sin 60 12.99kN Mz

y

M

M

2. Section properties:

0.05 0.1 0.04 0.115 0.03 0.2

0.1 0.04 0.03 0.2

.089

zAz

A

m

3 3

6 4

1 10.1 0.04 0.03 0.2

12 12

20.53 10 m

zI

3 2

3 2

6 4

10.04 0.1 0.04 0.1 0.89 0.5

121

0.3 0.03 0.3 0.03 0.115 0.8912

13.92 10 m

yI

Z axis is the NA

Y axis is the NA

52

Example 6.193. Bending stress:

yz

z y

M zM y

I I

4. Orientation of neutral axis:

tan tan ; 60z

y

I

I

6 6

7.5 0.1 12.99 0.04174.8

20.53 10 13.92 10B MPa

6 6

7.5 0.02 12.99 0.08990.4

20.53 10 13.92 10C MPa

68.6

53

Determine the force P so that max

180A MPa

1. Internal moment components

0; 2 cos30 0z zM M P 0; 2 sin 30 0y yM M P

1.732

1.0z

y

M P

M P

2. Section properties:

3

3 6 4

12 0.01 0.2

12

10.015 0.01 13.3458 10

12

yI

m

54

2. Section properties:

3 3

6 4

1 10.2 0.17 0.19 0.15

12 12

28.4458 10

zI

m

3. Maximum bending stress:

yz

z y

M zM y

I I

1.732

1.0z

y

M P

M P

Choose y positive and z negative: point A

6

6 6

1.732 0.085 1.0 0.1180 10

28.4458 10 13.3458 10

P P

14208 14.2P N kN

Determine the maximum bending stress in the shaft with 30mm diameter.