Chapter 6 Frequency Response & Systems Concepts

Post on 04-Jan-2016

69 views 5 download

Tags:

description

Chapter 6 Frequency Response & Systems Concepts. AC circuit analysis methods to study the frequency response of electrical circuits Understanding of frequency response aided by the concepts of phasors and impedance. Filtering – a new concept will be explored. Objectives. - PowerPoint PPT Presentation

transcript

Këpuska 2005 1

Chapter 6

Frequency Response & Systems Concepts

•AC circuit analysis methods to study the frequency response of electrical circuits

•Understanding of frequency response aided by the concepts of phasors and impedance.

•Filtering – a new concept will be explored

Këpuska 2005 2

Objectives

• Understand significance of frequency domain analysis

• Introduction of Fourier series as a tool for computation of Fourier spectrum.

• Analyze first and second-order electrical filters by determining their filtering properties.

• Computation of frequency response and its graphical representation as Bode plot.

Këpuska 2005 3

Sinusoidal Frequency Response

• Provides a circuit response to a sinusoidal input of arbitrary frequency.

• The frequency response of a circuit is a measure of voltage or current (magnitude and phase) as a function of the frequency of excitation (source) signal.

)(

)()(

jV

jVjH

S

Lv

Këpuska 2005 4

Methods to Compute Frequency Response

• Thevenin equivalent source circuit:

~

Zs Z1

Z2VTVL

+

-

~

ZT

VT

21

21

ZZZ

ZZZZ

s

sT

21

2

ZZZ

ZVV

sST

Këpuska 2005 5

Load Voltage VT

~

ZT

VTZL

SSSL

L

SS

S

SL

L

TTL

LL

VZZZZZZZ

ZZ

VZZZ

Z

ZZZ

ZZZZ

Z

VZZ

ZV

2121

2

21

2

21

21

Këpuska 2005 6

Frequency Response

• From definition:

• VL(j) is a phase-shifted and amplitude-scaled version of VS(j) ⇨

2121

2

ZZZZZZZ

ZZ

jV

jVjH

SSL

L

S

LV

Këpuska 2005 7

Frequency Response (cont)

• Phasor form of the load voltage:

SVL

SVL

jHjSV

jL

jS

jHjV

jL

SVL

jH

jVjHjV

ejVjHejV

ejVejHejV

jVjHjV

SVL

SVL

Këpuska 2005 8

Example 6.1

• Compute the frequency response Hv(j) of the circuit for R1= 1k, C=10F; and RL= 10k.

VS C

R1

RL VL

110arctan

110

10022

2121

2

2121

2

jH

ZZZZZ

ZZjH

VZZZZZ

ZZ

VZZ

ZV

V

L

LV

SL

L

TTL

LL

Këpuska 2005 9

Magnitude & Phaze

Këpuska 2005 10

Fourier Analysis

• Let x(t) be a periodic signal with period T.– x(t) = x(t+nT) for n=1,2,3,…

Këpuska 2005 11

Fourier Series• A signal x(t) can be expressed as an infinite summation

of sinusoidal components know as Fourier Series:• Sine-cosine (quadrature) representation

• Magnitude and Phase form:

• Fundamental Frequency and Period T:

110

2sin

2cos

nn

nn t

Tnbt

Tnaatx

10

10

2cos

2sin

nnn

nnn

tT

ncctx

tT

ncctx

Tf

22 00

Këpuska 2005 12

Fourier Series

• It can be shown

• Or similarly

n

n

n

n

nnn

n

n

nnn

a

bcba

a

bcba

tan

cot

22

22

Këpuska 2005 13

Fourier Series Aproximation

• Infinite summation practically not possible

• Replaced by finite summation that leads to approximation.– Higher order coefficients; n, are associated

with higher frequencies; (2/T)n. ⇒– Better approximations require larger

bandwidths.

Këpuska 2005 14

Fourier Series

• Odd and Even Functions

Këpuska 2005 15

Frequency Spectrum

Këpuska 2005 16

Computation of Fourier Series Coefficients

dttT

ntxT

dttT

ntxT

b

dttT

ntxT

dttT

ntxT

a

dttxT

dttxT

a

T

T

T

n

T

T

T

n

T

T

T

2sin

22sin

2

2cos

22cos

2

x(t)of valueaverage11

2

20

2

20

2

20

0

Këpuska 2005 17

Example of Fourier Series Approximation

• Square wave and its representation by a Fourier series. (a) Square wave (even function); (b) first three terms; (c) sum of first three terms

Këpuska 2005 18

Example 6.3 Computation of Fourier Series Coefficients

• Problem: Compute the complete Fourier Spectrum of the sawtooth function shown in the Figure below for T=1 and A=1:

Këpuska 2005 19

Solution

• x(t) is an odd function.

• Evaluate the integral in equation

TtT

tAtx

0 ,

21)(

1,2,3,...n 2

2cos2

4

2cos

/2

2sin

/2

140

2sin

42cos

2

2

2sin

222sin

2

2sin

21

2

2

2

0

222

02

0

00

0

πn

Aπn

πn

T

T

A

tT

πn

Tπn

tt

T

πn

TπnT

A

dttT

πn-t

T

At

T

πn

πn

T-

T

A

dttT

πn

T

t-

T

A dtt

T

πn

T

A

dttT

πn

T

t-A

Tb

T

TT

TT

T

n

Këpuska 2005 20

Solution (cont)• Spectrum computation:

00

cotcot 11

22

n

n

n

nnn

b

a

b

bbac

n

n

Këpuska 2005 21

Matlab Simulation• Components of the sawtooth wave

function:

Këpuska 2005 22

Matlab Simulation• Fourier Series approximation of sawtooth

wave function

Këpuska 2005 23

Example 6.4

• Problem: Compute the complete Fourier series expansion of the pulse waveform shown in the Figure for /T=0.2

• Plot the spectrum of the signal

Këpuska 2005 24

Solution

• Expression for x(t)

• Evaluate Integral Equations:

Tt

tAtx

0

0)( {

52.0|

10

0

0

AA

T

At

T

AAdt

Ta

Këpuska 2005 25

Solution (cont)

5

2cos1

2cos

2

2

2sin

2

5

2sin

2sin

2

2

2cos

2

0

0

0

0

πn

πn

At

T

πn

πn

AT

T

dttT

πn A

Tb

πn

πn

At

T

πn

πn

AT

T

dttT

πn A

Ta

n

n

Këpuska 2005 26

Spectrum Computation

• Magnitude:

• Phase:

22

22

5

2cos1

5

2sin

n

n

An

n

Abac

nnn

52sin

52cos1cotcot 11

nnA

nnA

a

b

n

n

n

Këpuska 2005 27

Graphical Representation

Këpuska 2005 28

Matlab Simulation

Këpuska 2005 29

Matlab Simulation

Këpuska 2005 30

Linear Systems Response to Periodic Inputs

• Any periodic signal x(t) can be represented as a sum of finite number of pure periodic terms:

10

2sin

nnn t

Tncctx

Këpuska 2005 31

General Input-Output Representation of a System

Këpuska 2005 32

Linear Systems• For Linear Systems - by definition

Principle of superposition applies:T{ax1(t) + bx2(t)} = aT{x1(t)} + bT{x2(t)}

x1

x2

a

b

T{} y= T{ax1(t) + bx2(t)} ax1[n] + bx2[n]

x1

x2

T{}

T{}

a

bbT{x2[n]}

y= aT{x1(n)}+bT{x2(n)}

aT{x1[n]}

Këpuska 2005 33

Linear System View of a Circuit

• Output of a circuit y(t) as a function of the input x(t):

1

sinn

nnnnn jHtcjHty

Këpuska 2005 34

Example 6.6 Response of Linear System to Periodic Input

• Problem: – Linear system:

– Input: sawtooth waveform approximated with only first two Fourier components of the input waveform.

2.01

2

jjH

Këpuska 2005 35

Solution• Approximation of the sawtooth function

with first two terms of Fourier Series:

• Spectrum Computation:

tttA

tA

tx

16sin2

8sin4

25.0

4sin

25.0

2sin

2)(

1622

814

01222

22

0122

1

2

111

bbac

bbac

Këpuska 2005 36

Frequency Response• Magnitude and Phase

• Computation of Frequency Response for two frequency values of 1 = 8 and 2 = 16:

5arctan

2.01

2

2.01

22

jjH

022

222

2

011

221

1

32.8447.116*2.0arctan2.0arctan

1980.016*2.01

2

2.01

2

75.7837.18*2.0arctan2.0arctan

3902.08*2.01

2

2.01

2

radj

jH

radj

jH

Këpuska 2005 37

Frequency Response (cont)

• Computation of steady-state periodic output of the system:

47.116sin2

1980.037.18sin4

3902.0

sin2

1

tt

jHtcjHtyn

nnnnn

Këpuska 2005 38

Matlab Simulation

Këpuska 2005 39

Matlab Simulation

Këpuska 2005 40

Filters

• Low-Pass Filters

C

R

VoVi

+ +

--

Simple RC Filter

Këpuska 2005 41

Low-Pass Filter

RCjjV

jV

jVRCj

CjR

CjjVjV

jV

jVjH

i

o

iio

i

o

1

1

1

11

1

Këpuska 2005 42

Low-Pass Filter

=0– H(j)=1 ⇨ Vo(j)=Vi(j)

>0

RC

RC

j

i

o

eRC

e

e

RC

RCjjV

jVjH

arctan

2

1arctan

0

2

1

1

1

1

1

1

Këpuska 2005 43

Low-Pass Filter

RC

RCjH

RCjH

ejHjH

o

o

o

jHj

1

arctanarctan

1

1

1

122

Cutoff Frequency

Këpuska 2005 44

Example 6.7

• Compute the response of the RC filter to sinusoidal inputs at the frequencies of 60 and 10,000 Hz.

• R=1k, C=0.47F, vi(t)=5cos(t) V

0=1/RC= 2,128 rad/sec = 120 rad/sec ⇒ /0 = 0.177

= 20,000 rad/sec ⇒ /0 = 29.5

Këpuska 2005 45

Solution

537.1000,102cos923.4

175.0602cos923.4

537.150345.0000,102

128,2000,102

1

1000,102

175.05985.0602

128,2602

1

1602

1

1

0

tv

tv

VjVj

jV

VjVj

jV

jVj

jV

o

o

io

io

io

Këpuska 2005 46

High-Pass Filters

VoVi

+ +

--

C

R

RCj

RCj

jV

jV

jVRCj

RCj

CjR

RjVjV

jV

jVjH

i

o

iio

i

o

1

11

Këpuska 2005 47

High-Pass Filter• The expression in previous slide can be

written in magnitude-and-phase form:

RCjH

RC

RCjH

eRC

RC

eRC

RCe

RCj

RCjjH

RCj

RCj

j

arctan90

1

1

11

0

2

arctan2

2

1arctan

2

2

Këpuska 2005 48

High-Pass Filter Response

Këpuska 2005 49

Band-Pass Filters

Këpuska 2005 50

Frequency Response of Band-Pass Filter

Këpuska 2005 51

Analysis of the Second Order Circuit

21

2

111

1

jj

jA

LCjRCj

RCj

LjCj

R

R

jV

jVjH

i

o

1, 2 and are the two frequencies that determine the pass-band (bandwidth) of the filter.

•A – gain of the filter.

Këpuska 2005 52

Magnitude and Phase form

21

21

arctanarctan2

2

2

2

1

arctanarctan

2

2

2

2

1

21

11

11

11

j

jj

j

eA

ee

eA

jj

jAjH

Këpuska 2005 53

Magnitude and Phase form

21

2

2

2

1

arctanarctan2

11

jH

AjH

Këpuska 2005 54

Frequency Response and Bandwidth

2

2

2

11

1

21

2

1

nn

n

nn

n

i

o

jQ

j

Qj

jj

j

LCjRCj

RCj

jV

jVjH

Këpuska 2005 55

Frequency Response and Bandwidth

Ratio Damping; 22

1

FactorQuality ; R

11

2

1Q

FrequencyResonant or Natural; 1

L

CR

Q

C

L

RC

LC

n

n

Këpuska 2005 56

Normalized Frequency Response & Bandwidth

Bandwidth ; Q

B n

Këpuska 2005 57

Frequency Response of the Filter with R=1 k; C=10 F; L=5 mH

rad/s 10,000Q

B n

Këpuska 2005 58

Frequency Response of the Filter with R=10 ; C=10 F; L=5 mH

rad/s 100Q

B n

Këpuska 2005 59

Bode Plots

• Logarithmic Plots of System’s Frequency Response:

• Both plots are function of frequency also represented in log scale.

Re

Imarctan

(dB) decibelsin log20

jH

A

A

A

AjH

i

o

i

o

Këpuska 2005 60

Bode Plot

• Example of Low-Pass Filter:

02

0

0

arctan

1

1

1

1

jV

jV

jjV

jVjH

i

o

i

o

Këpuska 2005 61

Bode Plot of Low-Pass Filter

0103.3log202log10log20 1

log20log20log20 1

log20 1

1log10log20

1

log20

0

00

0

2

02

0

KKjV

jV

KjV

jV

KjV

jV

KK

jV

jVjH

dBi

o

dBi

o

dBi

o

dBi

o

Këpuska 2005 62

Bode Plot of Low-Pass Filter

n⇨ Cut-off Frequency

-20 dB Slope

3dB

Këpuska 2005 63

Bode Plot of Low-Pass Filter

0

0

0

0

2

4

0

arctan

when

when

when

Këpuska 2005 64

Bode Plot of Low-Pass Filter

-450 dB Slope

Këpuska 2005 65

Correction Factors

/0Magnitude

Response Error in dB

Phase Response Error in dB

0.1 0 -5.7

0.5 -1 4.9

1 -3 0

2 -1 -4.9

10 0 +5/7

Këpuska 2005 66

Bode Plots of Higher-Order Filters

• Bode Plots Higher-Order Filters may be obtained by combining Bode-Plots of lower-order functions:– H(j) = H1(j) H2(j) H3(j) … Hn(j)

– |H(j)|dB = |H1(j)|dB + |H2(j)|dB + |H3(j)|dB + … + |Hn(j)|dB

H(j) = H1(j) + H2(j) + H3(j) + … + Hn(j)

Këpuska 2005 67

Example of High-Order Filter

1001

101

51005.0

1001log20

101log20

51log20005.0log20

1001

101

51005.0

1001100

10110

515

10010

5

jjjjH

jjjjH

jj

j

jj

jjH

jj

jjH

dB

Këpuska 2005 68

Magnitude and Phase in Bode Plots

Këpuska 2005 69

Composite Bode Plot

Këpuska 2005 70

Bode Plot Approximation Example

50001

101

200120

50001log20

101log20

2001log2020log20

50001

101

200120

1002.0102

1.020235

jjjjH

jjjjH

jjj

jjH

jjj

jjH

dB

Këpuska 2005 71

Straight Line Aproximation of Bode Plots

Këpuska 2005 72

Actual Magnitude and Phase

Këpuska 2005 73

Bode Plot Approximation Example

30001

1001

30111.0

30001log20

1001log20

301log201log201.0log20

30001

301

10011.0

1000,90

030,31091

1.0102

4

23

jjjjH

jjjjjH

jj

jjjH

jj

jjjH

dB

Këpuska 2005 74

Bode Plots

Këpuska 2005 75

Bode Plots