Chemistry 2100

Post on 25-Jan-2016

39 views 0 download

Tags:

description

Chemistry 2100. Lecture 5. Nomenclature. IUPAC names for aldehydes To name an aldehyde, change the suffix - e of the parent alkane to - al . - PowerPoint PPT Presentation

transcript

Chemistry 2100

Lecture 5

C

O

R'R

CO R'R

C

O

HR R CHO

NomenclatureIUPAC names for aldehydes– To name an aldehyde, change the suffix -ee of

the parent alkane to -alal.– Because the carbonyl group of an aldehyde can

only be at the end of a parent chain and numbering must start with it as carbon-1, there is no need to use a number to locate the aldehyde group.

– For unsaturated aldehydesunsaturated aldehydes, indicate the presence of a carbon-carbon double bond by changing the ending of the parent alkane from -aneane to -enalenal. Numbering the carbon chain begins with the aldehyde carbonyl carbon. Show the location of the carbon-carbon double bond by the number of its first carbon.

Nomenclature• The IUPAC system retains common

names for some aldehydes, including these three.

CHO

H

OCHO

OCH3

OHtrans-3-Phenyl-2-propenal

(Cinnamaldehyde; inoil of cinnamon)

Benzaldehyde(in almonds)

Vanillin(from vanilla

beans)

NomenclatureIUPAC names for ketones.– The parent alkane is the longest chain

that contains the carbonyl group.– Indicate the presence of the carbonyl

group by changing the -aneane of the parent alkane -oneone.

– Number the parent chain from the direction that gives the carbonyl carbon the smaller number.

– The IUPAC retains the common name acetone for 2-propanone.O

Acetone 2-Methylcyclohexanone5-Methyl-3-hexanone

OO

12

34

56

12

NomenclatureTo name an aldehyde or ketone that also contains an -OH (hydroxyl) or -NH2 (amino) group:– Number the parent chain to give the

carbonyl carbon the lower number.– Indicate an -OH substituent by hydroxy-hydroxy-,

and an -NH2 substituent by amino-amino-.

– Hydroxyl and amino substituents are numbered and alphabetized along with other substituents.

O

H

OOH

NH2

3-Hydroxy-4-methylpentanal 3-Amino-4-ethyl-2-hexanone

1345 12346

Nomenclature

Common namesThe common name for an aldehyde is derived from the common name of the corresponding carboxylic acid. – Drop the word "acidacid" and change the suffix -icic or -

oicoic to -aldehyde.aldehyde.

• Name each alkyl or aryl group bonded to the carbonyl carbon as a separate word, followed by the word "ketoneketone”. Alkyl or aryl groups are generally listed in order of increasing molecular weight.O

CH3CH

O

CH3COH

Acetaldehyde Acetic acid Ethyl isopropyl ketoneMethyl ethyl ketone

OO

Physical Properties

Physical Properties

pentanebutanal2-butanone1-butanolpropanoic acid

Name Structural FormulaMolecular

Weight (amu)

72727274

74

367680

117

141

bp(°C)

CH3CH2 CH2CH2CH3CH3CH2 CH2CHO

CH3CH2 CH2CH2OHCH3CH2 COOH

CH3CH2 COCH3

diethyl ether 74 34CH3CH2 OCH2CH3

Preparations

(1°)

R HC

O

aldehyde

[O] [O]

H

O

C ORcarboxylic acid

(2°)

[O]

H

O

C ORcarboxylic acid

R

HO

C H

H R

HO

C

H

R'

ketone

R C

O

R'[O]

(1°)

R HC

O

aldehyde

[O] [O]

H

O

C ORcarboxylic acid

(2°)

[O]

H

O

C ORcarboxylic acid

R

HO

C H

H R

HO

C

H

R'

ketone

R C

O

R'[O]

(1°)

R HC

O

aldehyde

[O] [O]

H

O

C ORcarboxylic acid

(2°)

[O]

H

O

C ORcarboxylic acid

R

HO

C H

H R

HO

C

H

R'

ketone

R C

O

R'[O]

(1°)

R HC

O

aldehyde

[O] [O]

H

O

C ORcarboxylic acid

(2°)

[O]

H

O

C ORcarboxylic acid

R

HO

C H

H R

HO

C

H

R'

ketone

R C

O

R'[O]

(1°)

R HC

O

aldehyde

[O] [O]

H

O

C ORcarboxylic acid

(2°)

[O]

H

O

C ORcarboxylic acid

R

HO

C H

H R

HO

C

H

R'

ketone

R C

O

R'[O]

Reactions

C

O H

Z

O

C

H Z+

Z = C, H

C

O H

Z

O

C

H Z+

Z = C, H

C

O H

Z

O

C

H Z+

Z = C, H

C

O H

Z

O

C

H Z+

Z = C, H

C

O H

Z

O

C

H Z+

Z = C, H

C

O H

Z

O

C

H Z+

Z = C, H

C

O H

Z

O

C

H Z+

Z = C, H

Z = C, H

C

O H

Z

O

C

H Z+

C

O H

Z

O

C

Z = X, O, N

H Z+

C

O H

Z

O

C

Z = X, O, N

OH

H Z+

OC

H

CH3

+ OCH2 CH3H

dry HCl

orTsOH / C6H 6

H+

C

H

CH3 O

O CH2 CH3

H

hemiacetal (full) acetal

H2 O+C

H

CH3 O

O CH2 CH3

CH2 CH3

H+

(xs)HOCH 2CH 3

OC

H

CH3

+ OCH2 CH3H

dry HCl

orTsOH / C6H 6

H+

C

H

CH3 O

O CH2 CH3

H

hemiacetal (full) acetal

H2 O+C

H

CH3 O

O CH2 CH3

CH2 CH3

H+

(xs)HOCH 2CH 3

OC

H

CH3

+ OCH2 CH3H

dry HCl

orTsOH / C6H 6

H+

C

H

CH3 O

O CH2 CH3

H

hemiacetal (full) acetal

H2 O+C

H

CH3 O

O CH2 CH3

CH2 CH3

H+

(xs)HOCH 2CH 3

OC

H

CH3

+ OCH2 CH3H

dry HCl

orTsOH / C6H 6

H+

C

H

CH3 O

O CH2 CH3

H

hemiacetal (full) acetal

H2 O+C

H

CH3 O

O CH2 CH3

CH2 CH3

H+

(xs)HOCH 2CH 3

OC

H

CH3

+ OCH2 CH3H

dry HCl

orTsOH / C6H 6

H+

C

H

CH3 O

O CH2 CH3

H

hemiacetal (full) acetal

H2 O+C

H

CH3 O

O CH2 CH3

CH2 CH3

H+

(xs)HOCH 2CH 3

OC

H

CH3

+ OCH2 CH3H

dry HCl

orTsOH / C6H 6

H+

C

H

CH3 O

O CH2 CH3

H

hemiacetal (full) acetal

H2 O+C

H

CH3 O

O CH2 CH3

CH2 CH3

H+

(xs)HOCH 2CH 3

OC

H

CH3

+ OCH2 CH3H

dry HCl

orTsOH / C6H 6

H+

C

H

CH3 O

O CH2 CH3

H

hemiacetal (full) acetal

H2 O+C

H

CH3 O

O CH2 CH3

CH2 CH3

H+

(xs)HOCH 2CH 3

OC

H

CH3

+ OCH2 CH3H

dry HCl

orTsOH / C6H 6

H+

C

H

CH3 O

O CH2 CH3

H

hemiacetal (full) acetal

H2 O+C

H

CH3 O

O CH2 CH3

CH2 CH3

H+

(xs)HOCH 2CH 3

OC

H

CH3

+ OCH2 CH3H

dry HCl

orTsOH / C6H 6

H+

C

H

CH3 O

O CH2 CH3

H

hemiacetal (full) acetal

H2 O+C

H

CH3 O

O CH2 CH3

CH2 CH3

H+

(xs)HOCH 2CH 3

OC

H

CH3

+ OCH2 CH3H

dry HCl

orTsOH / C6H 6

H+

C

H

CH3 O

O CH2 CH3

H

hemiacetal (full) acetal

H2 O+C

H

CH3 O

O CH2 CH3

CH2 CH3

H+

(xs)HOCH 2CH 3

H+

H+

H2 O

CH 3OH

ketal

+C

CH3

CH3 O

O CH3

CH3

hemiketal

C

CH3

CH3 O

O CH3

H

CH 3OHC

CH3

CH3

O

H+

H+

H2 O

CH 3OH

ketal

+C

CH3

CH3 O

O CH3

CH3

hemiketal

C

CH3

CH3 O

O CH3

H

CH 3OHC

CH3

CH3

O

H+

H+

H2 O

CH 3OH

ketal

+C

CH3

CH3 O

O CH3

CH3

hemiketal

C

CH3

CH3 O

O CH3

H

CH 3OHC

CH3

CH3

O(xs)

H+

H+

H2 O

CH 3OH

ketal

+C

CH3

CH3 O

O CH3

CH3

hemiketal

C

CH3

CH3 O

O CH3

H

CH 3OHC

CH3

CH3

O(xs)

H+

H+

H2 O

CH 3OH

ketal

+C

CH3

CH3 O

O CH3

CH3

hemiketal

C

CH3

CH3 O

O CH3

H

CH 3OHC

CH3

CH3

O(xs)

OC

C

H

C

C

O

H

OH

O

C C

C C

H

Cyclization

OC

C

H

C

C

O

H

OH

O

C C

C C

H

OC

C

H

C

C

O

H

OH

O

C C

C C

H

OC

C

H

C

C

O

H

OH

O

C C

C C

H

OC

C

H

C

C

O

H

OH

O

C C

C C

H

OC

C

H

C

C

O

H

OH

O

C C

C C

H

OH

O

C C

C C

H

C C

C

HO

C

C O

H

C O

C

CC

C

OH

H

OH

O

C C

C C

H

C C

C

HO

C

C O

H

C O

C

CC

C

OH

H

OH

O

C C

C C

H

C C

C

HO

C

C O

H

C O

C

CC

C

OH

H

O

HO

OH

OH

H

O

CH2OH H

C

CH2OH

OHH

HO H

H OH

H O

H

H

O

1

23

5

6

4

1

2

3

5

6

4

1

23

5

6

4

glucose

O

HO

OH

OH

H

O

CH2OH

H

O

HO

OH

OH

H

O

CH2OH H

C

CH2OH

OHH

HO H

H OH

H O

H

H

O

1

23

5

6

4

1

2

3

5

6

4

1

23

5

6

4

glucose

O

HO

OH

OH

H

O

CH2OH

H

O

HO

OH

OH

H

O

CH2OH H

C

CH2OH

OHH

HO H

H OH

H O

H

H

O

1

23

5

6

4

1

2

3

5

6

4

1

23

5

6

4

glucose

O

HO

OH

OH

H

O

CH2OH

H

O

HO

OH

OH

H

O

CH2OH H

C

CH2OH

OHH

HO H

H OH

H O

H

H

O

1

23

5

6

4

1

2

3

5

6

4

1

23

5

6

4

glucose

O

HO

OH

OH

H

O

CH2OH

H

O

HO

OH

OH

H

O

CH2OH H

C

CH2OH

OHH

HO H

H OH

H O

H

H

O

1

23

5

6

4

1

2

3

5

6

4

1

23

5

6

4

glucose

O

HO

OH

OH

H

O

CH2OH

H

C

CH2OH

OHH

HO H

H OH

H O

H

H

O1

2

3

5

6

4

1

23

5

6

4 glucose

O

HO

OH

OH

H

O

CH2OH

H

O

HO

OH

OH

H

O

CH2OH H

C

CH2OH

OHH

HO H

H OH

H O

H

H

O

1

23

5

6

4

1

2

3

5

6

4

1

23

5

6

4 glucose

O

HO

OH

OH

H

O

CH2OH

H

23

5

6

4

1

O

H

H

H

H

HO

HO

OHOH

CH2OH

H

-glucose

Reduction• The carbonyl group of an aldehyde or

ketone is reduced to an -CHOH group by hydrogen in the presence of a transition-metal catalyst.– Reduction of an aldehyde gives a primary

alcohol.– Reduction a ketone gives a secondary

alcohol. H2

transition metal catalyst+H

O

PentanalOH

1-Pentanol

H2

transition metal catalyst

+O

Cyclopentanone

OH

Cyclopentanol

Reduction

• Reduction by NaBH4 does not affect a carbon-carbon double bond or an aromatic ring.

HCO

1. NaBH4

2. H2O

CH2OH

Cinnamaldehyde Cinnamyl alcohol

O NaBH4O-

HH3O+ O-H

H

H - C O H C O - H3O+

H C O-H: +

Hydrideion

Benedict

Tollens

O

O

RC

H

O

RC + Ag

0Ag(NH3)2 +

OH-

H2O Cu2O++ Cu

+2 (citrate)

H

O

RC

O

O

RC

H2O

OH-

Keto-Enol Tautomerism

'

H

CCCC C C

O

'

'

H

CCCC C C

O

'

'

H

CCCC C C

O

'

'

H

CCCC C C

O

'

'

H

CCCC C C

O

'

'

H

CCCC C C

O

'

'

H

CCCC C C

O

'

"enolizable"

H

C

O

C

enol

keto

C

O

C

H

"enolizable"

H

C

O

C

enol

keto

C

O

C

H

"enolizable"

H

C

O

C

enol

keto

C

O

C

H

"enolizable"

H

C

O

C

enol

keto

C

O

C

H

"enolizable"

H

C

O

C

enol

keto

C

O

C

H

"enolizable"

H

C

O

C

enol

keto

C

O

C

H

"enolizable"

H

C

O

C

enol

keto

C

O

C

H

"enolizable"

H

C

O

C

enol

keto

C

O

C

H

tautomers

CH3 HC

O

CH2

?

CH3 HC

O

CH2

H ?

CH3 HC

O

CH

H CH3 HC

O

CH2

H H

C

O

C CH3CH3

H

CH3

CH

O

C CH2CH3

CH3

H

CH

O

C CH3CH3

CH3

HH

H H

C

O

C CH3CH3

H

CH3

CH

O

C CH2CH3

CH3

H

CH

O

C CH3CH3

CH3

HH

H H

H H

C

O

C CH3CH3

H

CH3

CH

O

C CH2CH3

CH3

H

CH

O

C CH3CH3

CH3

HH

H H

H H

C

O

C CH3CH3

H

CH3

CH

O

C CH2CH3

CH3

H

CH

O

C CH3CH3

CH3

HH

H H

H H

CH3

O

OH

H

O

CH3OH

H

OH

CH3

OH

CH3

O

OH

H

O

CH3OH

H

enediol

OH

CH3

OH

CH3

O

OH

H

O

CH3OH

H

enediol

OH

CH3

OH

H

H

CH3

O

OH

H

O

CH3OH

H

enediol

OH

CH3

OH

H

H

CH3

O

OH

H

O

CH3OH

H

enediol

OH

CH3

OH

H

H

O

O

O

CH OH

CH2 OH

HOH

O

O

HO OH

CH OH

CH2 OH

O

O

O

CH OH

CH2 OH

HOH

O

O

O

CH OH

CH2 OH

HOH

O

O

HO OH

CH OH

CH2 OH

O

O

O

CH OH

CH2 OH

HOH

O

O

O

CH OH

CH2 OH

HOH

O

O

HO OH

CH OH

CH2 OH

O

O

O

CH OH

CH2 OH

HOH

glyceraldehyde

3-phosphate

OPO3-2

H

CH2

OH

HOC

Cketonize

enolize

enolize

ketonize

OPO3-2

C OH

CH

CH2

OH

enediol

OPO3

-2CH2

O

OHCH2

C

dihydroxyacetonephosphate

glyceraldehyde

3-phosphate

OPO3-2

H

CH2

OH

HOC

Cketonize

enolize

enolize

ketonize

OPO3-2

C OH

CH

CH2

OH

enediol

OPO3

-2CH2

O

OHCH2

C

dihydroxyacetonephosphate

glyceraldehyde

3-phosphate

OPO3-2

H

CH2

OH

HOC

Cketonize

enolize

enolize

ketonize

OPO3-2

C OH

CH

CH2

OH

enediol

OPO3

-2CH2

O

OHCH2

C

dihydroxyacetonephosphate

glyceraldehyde

3-phosphate

OPO3-2

H

CH2

OH

HOC

Cketonize

enolize

enolize

ketonize

OPO3-2

C OH

CH

CH2

OH

enediol

OPO3

-2CH2

O

OHCH2

C

dihydroxyacetonephosphate

glyceraldehyde

3-phosphate

OPO3-2

H

CH2

OH

HOC

Cketonize

enolize

enolize

ketonize

OPO3-2

C OH

CH

CH2

OH

enediol

OPO3

-2CH2

O

OHCH2

C

dihydroxyacetonephosphate

glyceraldehyde

3-phosphate

OPO3-2

H

CH2

OH

HOC

Cketonize

enolize

enolize

ketonize

OPO3-2

C OH

CH

CH2

OH

enediol

OPO3

-2CH2

O

OHCH2

C

dihydroxyacetonephosphate

fructose-6-phosphate

HHO

H OH

H OH

CH2O PO3-2

OH

O

CH2

enolize

ketonize

enediol

CH

OH

HHO

H OH

H OH

CH2O PO3-2

OH

glucose-6-phosphate

ketonize

enolize

HHO

H OH

H OH

CH2O PO3-2

OHH

CO H

fructose-6-phosphate

HHO

H OH

H OH

CH2O PO3-2

OH

O

CH2

enolize

ketonize

enediol

CH

OH

HHO

H OH

H OH

CH2O PO3-2

OH

glucose-6-phosphate

ketonize

enolize

HHO

H OH

H OH

CH2O PO3-2

OHH

CO H

fructose-6-phosphate

HHO

H OH

H OH

CH2O PO3-2

OH

O

CH2

enolize

ketonize

enediol

CH

OH

HHO

H OH

H OH

CH2O PO3-2

OH

glucose-6-phosphate

ketonize

enolize

HHO

H OH

H OH

CH2O PO3-2

OHH

CO H

fructose-6-phosphate

HHO

H OH

H OH

CH2O PO3-2

OH

O

CH2

enolize

ketonize

enediol

CH

OH

HHO

H OH

H OH

CH2O PO3-2

OH

glucose-6-phosphate

ketonize

enolize

HHO

H OH

H OH

CH2O PO3-2

OHH

CO H

fructose-6-phosphate

HHO

H OH

H OH

CH2O PO3-2

OH

O

CH2

enolize

ketonize

enediol

CH

OH

HHO

H OH

H OH

CH2O PO3-2

OH

glucose-6-phosphate

ketonize

enolize

HHO

H OH

H OH

CH2O PO3-2

OHH

CO H

fructose-6-phosphate

HHO

H OH

H OH

CH2O PO3-2

OH

O

CH2

enolize

ketonize

enediol

CH

OH

HHO

H OH

H OH

CH2O PO3-2

OH

glucose-6-phosphate

ketonize

enolize

HHO

H OH

H OH

CH2O PO3-2

OHH

CO H

fructose-6-phosphate

HHO

H OH

H OH

CH2O PO3-2

OH

O

CH2

enolize

ketonize

enediol

CH

OH

HHO

H OH

H OH

CH2O PO3-2

OH

glucose-6-phosphate

ketonize

enolize

HHO

H OH

H OH

CH2O PO3-2

OHH

CO H

fructose-6-phosphate

HHO

H OH

H OH

CH2O PO3-2

OH

O

CH2

enolize

ketonize

enediol

CH

OH

HHO

H OH

H OH

CH2O PO3-2

OH

glucose-6-phosphate

ketonize

enolize

HHO

H OH

H OH

CH2O PO3-2

OHH

CO H

Carboxylic Acids

Carboxylic Acids

• In this chapter, we study carboxylic acids, another class of organic compounds containing the carbonyl group.

• The functional group of a carboxylic acid is a carboxyl groupcarboxyl group, which can be represented in any one of three ways.

CO2HCOOHC-OHO

Nomenclature

IUPAC names– For an acyclic carboxylic acid, take the

longest carbon chain that contains the carboxyl group as the parent alkane.

– Drop the final -ee from the name of the parent alkane and replace it by -oic acidoic acid.

– Number the chain beginning with the carbon of the carboxyl group.

– Because the carboxyl carbon is understood to be carbon 1, there is no need to give it a number.

Nomenclature

– In these examples, the common name is given in parentheses.

– An -OH substituent is indicated by the prefix hydroxy-; an -NH2 substituent by the prefix amino-.

3-Methylbutanoic acid(Isovaleric acid)

Hexanoic acid(Caproic acid)

OH

O

OH

O1 1

63

OH

OOHH2N COOH

5-Hydroxyhexanoic acid

15

4-Aminobenzoic acid

Nomenclature– To name a dicarboxylic acid, add the

suffix -dioic aciddioic acid to the name of the parent alkane that contains both carboxyl groups; thus, -aneane becomes -anedioic anedioic acidacid.

– The numbers of the carboxyl carbons are not indicated because they can be only at the ends of the chain.O

HOOH

O

Butanedioic acid(Succinic acid)

Ethanedioic acid(Oxalic acid)

Hexanedioic acid(Adipic acid)

Propanedioic acid(Malonic acid)

HO OH

O

OOH

O

OH

O

O

HO

O

HO

1 1

1 1

2 3

4 6OH

O

HO15

O

Pentanedioic acid(Glutaric acid)

Nomenclature

CH3COOHHCOOH

CH3CH2COOHCH3(CH2)2COOHCH3(CH2)3COOHCH3(CH2)4COOHCH3(CH2)6COOHCH3(CH2)8COOHCH3(CH2)10COOHCH3(CH2)12COOHCH3(CH2)14COOHCH3(CH2)16COOHCH3(CH2)18COOH

DerivationCommon Name

IUPAC Name(acid)Structure

Greek: arachis, peanutGreek: stear, solid fatLatin: palma, palm treeGreek: myristikos, fragrantLatin: laurus, laurelLatin: caper, goatLatin: caper, goatLatin: caper, goatLatin: valere, to be strongLatin: butyrum, butterGreek: propion, first fatLatin: acetum, vinegarLatin: formica, ant

arachidicstearicpalmiticmyristiclauric

capriccapryliccaproicvalericbutyricpropionicaceticformic

eicosanoicoctadecanoichexadecanoictetradecanoicdodecanoicdecanoicoctanoichexanoicpentanoicbutanoicpropanoicethanoicmethanoic

Nomenclature

For common names, use, the Greek letters alpha (), beta (), gamma (), and so forth to locate substituents.

C-C-C-C-OHO

OHH2N

O

OHOH

O

(-Aminobutyric acid; GABA)2-Hydroxypropanoic acid4-Aminobutanoic acid

4 3 2

1

4

1

2

(-Hydroxypropionic acid;lactic acid)

Physical Properties

H3C C

O

O

H

CH3C

O

O

H- +

+ -

hydrogen bondingbetween two molecules

Physical PropertiesCarboxylic acids are more soluble in water than are alcohols, ethers, aldehydes, and ketones of comparable molecular weight.

CH3COOHCH3CH2CH2OHCH3CH2CHO

CH3(CH2)2COOHCH3(CH2)3CH2OHCH3(CH2)3CHO

acetic acid

1-propanolpropanal

60.5

60.158.1

1189748

16388.1butanoic acid1-pentanol 88.1 137

103pentanal 86.1

Structure NameMolecularWeight

Boiling Point (°C)

Solubility(g/100 mL H2O)

infinite

infinite

16infinite

2.3slight

larger Ka increased [H3O+] stronger acid

A– + H3O+

[HA][A–] [H3O+]

Ka =

HA + H2O

larger Ka increased [H3O+] stronger acid

A– + H3O+

[HA][A–] [H3O+]

Ka =

HA + H2O

increased [H3O+] stronger acid

A– + H3O+

[HA][A–] [H3O+]

larger Ka

Ka =

HA + H2O

larger Ka increased [H3O+] stronger acid

A– + H3O+

[HA][A–] [H3O+]

Ka =

HA + H2O

RCOOH + H2O RCOO– + H3O+

[RCOOH][RCOO–] [H3O+]

Ka =

RCOOH + H2O RCOO– + H3O+

[RCOOH][RCOO–] [H3O+]

Ka =

acids > phenols ~ thiols > water ~ alcohols

Ka % ionized [H3O+], M pH

~1 107 ~100 ~0.1 1.00

1.8 10–5 1.3 1.3 10–3 2.88

3.3 10–10 0.0036 3.6 10–6 5.44

2.5 10–11 0.0016 1.6 10–6 5.80

1.3 10–16 0.0001 1.0 10–7 7.00

HCl

HOAc

PhOH

EtSH

EtOH

HOH

Comparative acidities of 0.1 M aqueous solutions of representative acids HA

1.8 10–16 0.0001 1.0 10–7 7.00

Fatty AcidsTable 18.3 The Most Abundant Fatty Acids in Animal Fats, Vegetable Oils, and Biological Membranes.

Unsaturated Fatty Acids

Saturated Fatty Acids

20:4

18:3

18:2

18:1

16:1

20:0

18:0

16:0

14:0

12:0

Carbon Atoms:Double Bonds*

Melting Point(°C)

Common NameStructure

-49

-11

-5

16

1

77

70

63

58

44

arachidonic acid

linolenic acid

linoleic acid

oleic acid

palmitoleic acid

arachidic acid

stearic acid

palmitic acid

myristic acid

lauric acid

CH3(CH2)1 2COOH

CH3(CH2)1 0COOH

CH3(CH2)1 4COOH

CH3(CH2)1 6COOH

CH3(CH2)1 8COOH

CH3(CH2)7 CH=CH(CH2 )7COOH

CH3(CH2)5 CH=CH(CH2 )7COOH

CH3(CH2)4 (CH=CHCH2 )2(CH2)6 COOH

CH3CH2 (CH=CHCH2 )3(CH2)6 COOH

CH3(CH2)4 (CH=CHCH2 )4(CH2)2 COOH

* The first number is the number of carbons in the fatty acid; the second is the number of carbon-carbon double bonds in its hydrocarbon chain.

Fatty AcidsUnsaturated fatty acids generally have lower melting points than their saturated counterparts.

COOH

COOH

COOH

COOH

Stearic acid (18:0)(mp 70°C)

Oleic acid (18;1)(mp 16°C)

Linoleic acid (18:2)(mp-5°C)

Linolenic acid (18:3)(mp -11°C)

Fatty AcidsSaturated fatty acids are solids at room temperature.– The regular nature of their hydrocarbon

chains allows them to pack together in such a way as to maximize interactions (by London dispersion forces) between their chains.

COOH

COOH

COOH

COOH

COOH

Fatty Acids

In contrast, all unsaturated fatty acids are liquids at room temperature because the cis double bonds interrupt the regular packing of their hydrocarbon chains.

COOH

COOH

COOH

COOH

COOH

Soaps

Soaps

Decarboxylation

• DecarboxylationDecarboxylation: The loss of CO2 from a carboxyl group.

• Almost all carboxylic acids, when heated to a very high temperature, will undergo thermal decarboxylation.

• Most carboxylic acids, however, are resistant to moderate heat and melt and even boil without undergoing decarboxylation.

• An exception is any carboxylic acid that has a carbonyl group on the carbon to the COOH group.

O

RCOH RH CO2decarboxylation +

high temperature

Decarboxylation

• Decarboxylation of a -ketoacid.

• The mechanism of thermal decarboxylation involves (1) redistribution of electrons in a cyclic transition state followed by (2) keto-enol tautomerism.

OH

OO O

CO2Acetone3-Oxobutanoic acid

(Acetoacetic acid)

+warm

O OH

O

OH

C

O

O

OCO2

+

enol ofa ketone

(A cyclic six-membered transition state)

(1) (2)

Decarboxylation• An important example of decarboxylation of

a -ketoacid in biochemistry occurs during the oxidation of foodstuffs in the tricarboxylic acid (TCA) cycle. Oxalosuccinic acid, one of the intermediates in this cycle, has a carbonyl group (in this case a ketone) to one of its three carboxyl groups.

COOHCOOH

O

HOOC COOH

O

HOOC CO2+

Oxalosuccinic acid

only this carboxyl has a C=O beta to it.

-Ketoglutaric acid