CO2-Capture from Cement Plants Applying Oxyfuel Concepts

Post on 15-Jan-2022

5 views 0 download

transcript

CO2-Capture from Cement

Plants Applying Oxyfuel

Concepts

S Oberhauser

Institute of

Energy Systems

A Kather

2nd International Conference on Energy

Process Engineering

20.06.2011 - 22.06.2011

2Motivation

Why Applying CCS to the Cement Industry ?

CO2 Emissions from Stationary Sources

(Metz, Bert et al, 2005)

Others 15%

Power Industry 78%

Cement

Industy

7% • Large Development of CCS applied

to power plants during the past several

years

• Cement Industry second largest

stationary CO2 source

• No possibility to avoid CO2 emitted

by the raw material

3

CO2-Sources in the Cement Industry

H2O

SiO2 CaCO3

MgCO3

Al2O3

Fe2O3

H2O CaOFe2O3

SiO2

calcination reaction:

CaCO3 CaO + CO2

MgCO3 MgO + CO2

Others

Motivation

1/3 of emitted CO2Fossil Fuel

2/3 of emitted CO2 not possible to avoid !

Al2O3

MgO

2/3 of emitted CO2

4

Conventional Cement Plant with Calciner

Conventional Cement Production

Rotary Kiln

Fuel

Cooling Air

Calciner

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment FuelRaw

Material

Raw

Material

Flu

eG

as

~860°C

Flue

Gas

Treat-

ment

Waste Air

Waste Air

Treatment

Cooler

5

Conventional Cement Plant with Calciner

Conventional Cement Production

Rotary KilnCooler

Fuel

Cooling Air

Calciner

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment FuelRaw

Material

Flu

eG

as

~860°C

Flue

Gas

Treat-

ment

Fixed Parameters for Simulation:

• Fixed raw meal composition

• Calcination of 90% in calciner

• Clinker after rotary kiln: 1400°C

• Air Excess: kiln: 1.15

calciner: 1.30

• Reaction behaviour according to

to pseudo-equilibrium investigated by

experiments

Waste Air

Waste Air

Treatment

6

Rotary KilnCooler

Fuel

Cooling Air

Waste Air

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment Fuel

Waste Air

Treatment

Raw

Material

Conventional Cement Production

Flu

eG

as

~860°C

Modifications to Full Oxyfuel (Case A-0)

Calciner

Flue

Gas

Treat-

ment

7

Modifications to Full Oxyfuel (Case A-0)

Rotary KilnCooler

Fuel

Cooling Air

Waste Air

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment Fuel

Waste Air

Treatment

Flue

Gas

Treat-

ment

Raw

Material

Preheater

Raw Meal

Pretreating,

Gas Treating

Ca

lcin

er

Concepts to Apply Full Oxyfuel

Flu

eG

as

~860°C

8

Modifications to Full Oxyfuel (Case A-0)

Rotary KilnCooler

Fuel

Cooling Air

Waste Air

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment Fuel

Waste Air

Treatment

Flue

Gas

Treat-

ment

Raw

Material

Preheater

Raw Meal

Pretreating,

Gas Treating

Ca

lcin

er

Concepts to Apply Full Oxyfuel

ASU

Cooling WFGD GPUCooling Hot ESP

Recirculation Rate:

Calciner: equal solid loading

Rotary kiln: equal TadiabaticWa

ste

Air

ASU: 99.5% Oxygen Purity

GPU: 95% CO2 Purity

~900°C

100

27.5

30.8

95.6

11,2

0

20

40

60

80

100CO2-Emission Incl. Elec. Power

CO2-Emission Excl. Elec. Power

100

127

113.1

91.8

373

100

0

200

400

600

800

1000

1200

1400

1600

1800

0

20

40

60

80

100

120

140Fuel-Energy

GPU

ASU

Electrical Power

9

Evaluation of First Full Oxyfuel Case

Base

Case

Case

A-0

Case

A-HX

Case

A-Direct

Base

Case

Case

A-0

Case

A-HX

Case

A-Direct

Ele

ctr

ica

lEn

erg

yD

em

an

d P

el/ P

el,B

ase

in %

Fu

el D

em

an

d Q

F/Q

F, B

ase in

%

CO

2-E

mis

sio

n R

atio

in

%

Concepts to Apply Full Oxyfuel

according to

German power mix (2010):

0.575 kgCO2/kWh

10

Full Oxyfuel (Avoiding Air-In Leakages, Before)

Rotary KilnCooler

Fuel

Cooling Air

Waste Air

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment Fuel

Waste Air

Treatment

Flue

Gas

Treat-

ment

Raw

Material

Preheater

Ca

lcin

er

ASU

Cooling WFGD GPUCooling Hot ESP

Wa

ste

Air

Concepts to Apply Full Oxyfuel

Raw Meal

Pretreating,

Gas Treating

11

Full Oxyfuel (Avoiding Air-In Leakages, After)

Rotary KilnCooler

Fuel

Cooling Air

Waste Air

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment Fuel

Waste Air

Treatment

Flue

Gas

Treat-

ment

Raw

Material

Preheater

Ca

lcin

er

ASU

Cooling WFGD GPUCooling Hot ESP

Wa

ste

Air

X

X

X

Concepts to Apply Full Oxyfuel

Raw Meal

Pretreating,

Gas Treating

100

27,5

30.8

95.6

11.2

0

20

40

60

80

100CO2-Emission Incl. Elec. Power

CO2-Emission Excl. Elec. Power

100

127

113.1

91.8

373

100

0

200

400

600

800

1000

1200

1400

1600

1800

0

20

40

60

80

100

120

140Fuel-Energy

GPU

ASU

Electrical Power

12

Base

Case

Case

A-0

Case

A-HX

Case

A-Direct

Base

Case

Case

A-0

Case

A-HX

Case

A-Direct

Ele

ctr

ica

lEn

erg

yD

em

an

d P

el/ P

el,B

ase

in %

Fu

el D

em

an

d Q

F/Q

F, B

ase in

%

CO

2-E

mis

sio

n R

atio

in

%

Concepts to Apply Full Oxyfuel

Evaluation of Avoiding Air-In Leakages (Before)

100

20.9 19.6 18,6

95.6

4.6 4.1 4.9

0

20

40

60

80

100CO2-Emission Incl. Elec. Power

CO2-Emission Excl. Elec. Power

100

127

113.1

92

371 352 319

100

0

200

400

600

800

1000

1200

1400

1600

1800

0

20

40

60

80

100

120

140Fuel-Energy

GPU

ASU

Electrical Power

13

Evaluation of Avoiding Air-In Leakages (After)

Base

Case

Case

A-0

Case

A-HX

Case

A-Direct

Base

Case

Case

A-0

Case

A-HX

Case

A-Direct

Ele

ctr

ica

lEn

erg

yD

em

an

d P

el/ P

el,B

ase

in %

Fu

el D

em

an

d Q

F/Q

F, B

ase in

%

CO

2-E

mis

sio

n R

atio

in

%

Concepts to Apply Full Oxyfuel

14

Full Oxyfuel (Case A-HX)

Rotary KilnCooler

Fuel

Cooling Air

Waste Air

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment Fuel

Waste Air

TreatmentFlue

Gas

Treat-

ment

Raw

Material

Preheater

Ca

lcin

er

ASU

Cooling WFGD GPUCooling Hot ESP

Wa

ste

Air

Concepts to Apply Full Oxyfuel

Raw Meal

Pretreating,

Gas Treating

15

Full Oxyfuel (Case A-HX)

Rotary KilnCooler

Fuel

Cooling Air

Waste Air

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment Fuel

Waste Air

TreatmentFlue

Gas

Treat-

ment

Raw

Material

Preheater

Ca

lcin

er

ASU

Cooling WFGD GPUCooling Hot ESP

Wa

ste

Air

Gas-Gas

Heat Exchanger

Concepts to Apply Full Oxyfuel

Raw Meal

Pretreating,

Gas Treating

100

20.9 19.6 18,6

95.6

4.6 4.1 4.9

0

20

40

60

80

100CO2-Emission Incl. Elec. Power

CO2-Emission Excl. Elec. Power

100

127

113

92

371 352 319

100

0

200

400

600

800

1000

1200

1400

1600

1800

0

20

40

60

80

100

120

140Fuel-Energy

GPU

ASU

Electrical Power

16

Evaluation of Different Heat Recovery Systems

Base

Case

Case

A-0

Case

A-HX

Case

A-Direct

Base

Case

Case

A-0

Case

A-HX

Case

A-Direct

Ele

ctr

ica

lEn

erg

yD

em

an

d P

el/ P

el,B

ase

in %

Fu

el D

em

an

d Q

F/Q

F, B

ase in

%

CO

2-E

mis

sio

n R

atio

in

%

Concepts to Apply Full Oxyfuel

17

Full Oxyfuel (Case A-Direct)

Rotary KilnCooler

Fuel

Cooling Air

Waste Air

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment Fuel

Waste Air

Treatment

Flue

Gas

Treat-

ment

Raw

Material

Preheater

Raw Meal

Pretreating,

Gas Treating

Ca

lcin

er

ASU

Cooling WFGD GPUCooling Hot ESP

Wa

ste

Air

Concepts to Apply Full Oxyfuel

18

Full Oxyfuel (Case A-Direct)

Rotary KilnCooler

Fuel

Cooling Air

Waste Air

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment Fuel

Waste Air

Treatment

Flue

Gas

Treat-

ment

Raw

Material

Preheater

Raw Meal

Pretreating,

Gas Treating

Ca

lcin

er

ASU

Cooling WFGD GPUCooling Hot ESP

Wa

ste

Air

Concepts to Apply Full Oxyfuel

100

20.9 19.6 18,6

95.6

4.6 4.1 4.9

0

20

40

60

80

100CO2-Emission Incl. Elec. Power

CO2-Emission Excl. Elec. Power

100

127

113

92

371 352 319

100

0

200

400

600

800

1000

1200

1400

1600

1800

0

20

40

60

80

100

120

140Fuel-Energy

GPU

ASU

Electrical Power

19

Base

Case

Case

A-0

Case

A-HX

Case

A-Direct

Base

Case

Case

A-0

Case

A-HX

Case

A-Direct

Ele

ctr

ica

lEn

erg

yD

em

an

d P

el/ P

el,B

ase

in %

Fu

el D

em

an

d Q

F/Q

F, B

ase in

%

CO

2-E

mis

sio

n R

atio

in

%

Concepts to Apply Full Oxyfuel

Evaluation of Different Heat Recovery Systems

20Concepts to Apply Full Oxyfuel

Influences of recirculation rate:

• Flue gas temperature of preheater

• Solid Loading in the Calciner

• Air-in leakage

• Heat recovered from cooler

Lowest heat demand at a

recirculation rate, were solid loading

of calciner is ~1.15 times

solid loading of base case

Influences of Recirculation Rate

Rotary KilnCooler

Fuel

Cooling Air

Waste Air

Cement

ClinkerFuel

Waste Air

Treatment

ASU

Cooling WFGD GPUCooling Hot ESP

100

38.6

18.5

95.6

26.7

4.50

20

40

60

80

100

120

140CO2-Emission Incl. Elec. Power

CO2-Emission Excl. Elec. Power

10095

92

100

270318

0

200

400

600

800

1000

1200

1400

1600

1800

0

20

40

60

80

100

120

140Fuel-EnergyGPUASUElectrical Power

21

Fu

el D

em

an

d Q

F/Q

F, B

ase in

%

CO

2-E

mis

sio

n R

atio

in

%

Ele

ctr

ica

lEnerg

yD

em

an

d P

el/ P

el,B

ase

in %

Base

Case

Case

B-Direct

Case

A-DirectBase

Case

Case

B-Direct

Case

A-Direct

Evaluation of Best Case for Full Oxyfuel Operation

Concepts to Apply Full Oxyfuel

22

Modification to Partial Oxyfuel (Before)

Rotary Kiln

Fuel

Cooling Air

Waste Air

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment Fuel

Waste Air

TreatmentFlue

Gas

Treat-

ment

Raw

Material

Preheater 1

(Oxyfuel)

Raw Meal

Pretreating,

Gas Treating

Ca

lcin

er

Concepts to Apply Partial Oxyfuel

ASU

Cooling WFGD GPUCooling Hot ESP

Wa

ste

Air

Cooler

23

Modification to Partial Oxyfuel (After, Case B-0)

Rotary Kiln

Fuel

Cooling Air

Waste Air

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment Fuel

Waste Air

TreatmentFlue

Gas

Treat-

ment

Raw

Material

Preheater 1

(Oxyfuel)

Raw Meal

Pretreating,

Gas Treating

Ca

lcin

er

Concepts to Apply Partial Oxyfuel

ASU

Cooling WFGD GPUCooling Hot ESP

Preheater 2

(Air)

Flu

e

Gas

Cooler

24

Partial Oxyfuel (Case B-HX)

Rotary Kiln

Fuel

Cooling Air

Waste Air

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment Fuel

Waste Air

TreatmentFlue

Gas

Treat-

ment

Raw

Material

Preheater 1

(Oxyfuel)

Raw Meal

Pretreating,

Gas Treating

Ca

lcin

er

ASU

Cooling WFGD GPUCooling Hot ESP

Flu

e

Gas

Preheater 2

(Air)

Gas-Gas

Heat Exchanger

Cooler

Concepts to Apply Partial Oxyfuel

25

Partial Oxyfuel (Case B-Direct)

Rotary Kiln

Fuel

Cooling Air

Waste Air

Cement

Clinker

Ra

wM

ea

l

Raw

Material

Treatment Fuel

Waste Air

TreatmentFlue

Gas

Treat-

ment

Raw

Material

Preheater 1

(Oxyfuel)

Raw Meal

Pretreating,

Gas Treating

Ca

lcin

er

ASU

Cooling WFGD GPUCooling Hot ESP

Preheater 2

(Air)

Cooler

Concepts to Apply Partial Oxyfuel

Flu

e

Gas

100

38.6

18.5

95.6

26.7

4.50

20

40

60

80

100

120

140CO2-Emission Incl. Elec. Power

CO2-Emission Excl. Elec. Power

10095

92

100

270318

0

200

400

600

800

1000

1200

1400

1600

1800

0

20

40

60

80

100

120

140Fuel-EnergyGPUASUElectrical Power

26

Fu

el D

em

an

d Q

F/Q

F, B

ase in

%

CO

2-E

mis

sio

n R

atio

in

%

Ele

ctr

ica

lEnerg

yD

em

an

d P

el/ P

el,B

ase

in %

Base

Case

Case

B-Direct

Case

A-DirectBase

Case

Case

B-Direct

Case

A-Direct

Concepts to Apply Oxyfuel

Evaluation of Best Cases of Full and Partial

Oxyfuel Operation

27

Conclusion

• Two main concepts for oxyfuel operation in a cement plant have been evaluated

• Different subconcepts for heat recovery from clinker cooler have been compared

• Uncertainties:

- Effect of CO2-rich fluegas in kiln on clinker quality

- Effect of CO2-rich recirculation gas in clinker cooler on

clinker quality

- Air-in leakage into cooler

• Advantages/disadvantages of best subconcepts:

• In spite of remaining uncertainties concepts become more and more CONCRETE

Concept Fuel Demand Electrical Energy

Demand

CO2-Emission Risk

Base Case o o o o

Partial Oxyfuel

Concepts+ - + -

Full Oxyfuel

Concepts+ - - + + - -

Conclusion

THANK YOU FOR YOUR ATTENTION !