Computed Radiography System Simulation Focusing on the ...€¦ · Computed Radiography System...

Post on 12-Aug-2020

12 views 1 download

transcript

Computed Radiography System

Simulation Focusing on the Optical

Readout Process

Min YAO INSA de Lyon

Valérie KAFTANDJIAN INSA de Lyon

Philippe DUVAUCHELLE INSA de Lyon

Angéla PETERZOL-PARMENTIER AREVA

Andreas SCHUMM EDF

Peter WILLEMS GE

Juin 22, 2015

Digital Industrial Radiology and Computed Tomography (DIR 2015) 22-25 June 2015, Belgium, Ghent - www.ndt.net/app.DIR2015

2 / 18

Outline

1. Computed radiography principle, advantages and

limitations

2. Optical readout simulation

Involved phenomena

Simulation method

– Laser spreading inside imaging plate (Monte Carlo tool)

– Laser scanning (Analytical model)

3. Illustration of different optical effects

4. Conclusion

3 / 18

What is Computed Radiography (CR)?

Imaging Plate Moved Translationally

Laser

ADCDigitizedSignal

2.Readout

3.Erasure

Intense Light

1.X-Ray Exposure

IPirradiation

Imaging Plate (IP)

Latent image

X-ray source

object

4 / 18

Advantages and limitations

• Advantages

+ Flexibility of detector

+ Direct digital image

+ Reusability

+ High dynamic range up to 105

• Limitations

- Poor efficiency at high energies

- Poor spatial resolution

due to the optical readout process

5 / 18

Objective

• CR imaging chain modeling

Exposure Readout

Source

object

detector

ScannerX-ray

Latent imageX-ray CR final imageLatent image

6 / 18

Optical readout simulation: involved phenomena

Imaging Plate Moved Translationally

Laser

ADC DigitizedSignal

Scan (Laser Beam) Direction

Sub-s

can (

Pla

te

Tra

nsla

tion)

Direction

* AAPM Task Group 10 (2006)

• Flying spot scanner

Latent image read by a scanning laser

7 / 18

Optical readout simulation: involved phenomena

• Static laser

Photo-stimulation by laser beam

Light emission: photo-stimulated luminescence (PSL)

Laser beam

Support

Protective layer

PSL

Phosphor layer

8 / 18

• Scanning laser

PSL emission

Latent image

modification

PSLLaser

t+Δt

PSLLaser

t+2Δt

PSLLaser

t+3Δt

Optical readout simulation: involved phenomena

9 / 18

• Analytical operator using a Monte Carlo optical response model

Optical readout simulation: method

H2

Latent image

Limg(x,y,z)

CR final imageDimg(x,y)

Optical response

model f(x,y,z)

Scanning

parameters

PSLLaser

PSLLaser

PSLLaser

),,(),( 2 parametersscanningfLimgHyxDimg nm

10 / 18

yx

scanlasernm

z

nm

dxdytPzyyxxfzyxLimgdzzP

parametersscanningfLimgHyxDimg

,

(mod)

2

),,(exp1),,()(

),,(),(

Optical readout simulation: method

latent image

modified by

scanning

optical cross

section of

photostimulation

optical response

(Monte Carlo)

PSL

detection

probability

Scanning

parameters

* Modified fromThoms (1996)

11 / 18Radius (m)

De

pth

(

m)

-200 -100 0 100 200

0

50

100

150

La

se

r d

istr

ibu

tio

n (

cm

-2)

2

4

6

8

10

x 106

Optical readout simulation: method

• Monte Carlo tool to obtain the optical response f(x,y,z)

IP is described by

Absorption coefficient

Scattering coefficient

Anisotropic factor :

– Forward peaked scattering

– Isotropic

– ...

Boundary conditions

• Output

light intensity function f(x,y,z)

Laser

f(x,y,z)

* Wang et al. (1995)

Fasbender et al. (2003)

12 / 18

100 200

Different optical effects illustration: absorption coefficient

• Great absorption coefficient: small scattering region

Bad efficiency, good resolution

100 times higher absorptionreference

-200 -100200

150

100

50

0

-200 -100200

150

100

50

0

Laser

-200 -100200

150

100

50

0

50

100

150

200

250

300

350

400

Intensity

IP d

epth

m)

Radius (µm)

I(x,y,z)

13 / 18

100 200

-200 -100200

150

100

50

0

• Forward peaked scattering: great penetration depth

Good efficiency, good resolution

Different optical effects illustration: anisotropy factor

Forward peaked scattering

Laser

reference

-200 -100200

150

100

50

0

50

100

150

200

250

300

350

400

IP d

epth

m)

Radius (µm)

Intensity

-200 -100200

150

100

50

0

I(x,y,z)

14 / 18

Different optical effects illustration: laser intensity

• Great intensity: great penetration depth

Good efficiency, bad resolution

2 times more intensity

100 200

Laser

reference

-200 -100200

150

100

50

0

-200 -100200

150

100

50

0

50

100

150

200

250

300

350

400

IP d

epth

m)

Radius (µm)

-200 -100200

150

100

50

0 Intensity

I(x,y,z)

15 / 18

Different optical effects illustration: IP thickness

• Small thickness: small scattering region

Bad efficiency, good resolution

Small thickness

100 200

Laser

reference

-200 -100200

150

100

50

0

-200 -100200

150

100

50

0

50

100

150

200

250

300

350

400

IP d

epth

m)

Radius (µm)

-200 -100200

150

100

50

0 Intensity

I(x,y,z)

16 / 18

Different optical effects illustration: scanning effect

x (mm)

y (

mm

)

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 15.2

15.4

15.6

15.8

16

16.2

16.4

16.6

16.8

17Readout factor1010

x (mm)

y (

mm

)

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 660

670

680

690

700

710

720

730

Readoutfactor1016

x (mm)

y (

mm

)

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

13.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

4.25

x 104

Limg

x 104

Readout factor= Laser power × scanning time

Example of latent image (reference test object with various holes)

17 / 18

-10 -8 -6 -4 -2 0 2 4 6 8 100.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

y (mm)

No

rma

lize

d p

rofi

le

Latent image

1e10

1e16

-10 -8 -6 -4 -2 0 2 4 6 8 100.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

y (mm)

No

rma

lize

d p

rofi

le

Latent image

1e10

1e16

-10 -8 -6 -4 -2 0 2 4 6 8 100.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

y (mm)

No

rma

lize

d p

rofi

le

Latent image

1e10

1e16

• Influence of readout factor

Different optical effects illustration: scanning effect

18 / 18

Conclusion

• Simulation of optical readout process combining

analytical and MC tool

Interest of the tool

→ study of different optical effects

– absorption and scattering factors, IP thickness …

– scanning parameters

Modeling of the complete CR system is now available

→ in use at industrial site AREVA and EDF

To be done in the future : structural noise of IP

Thank you for your attention!