Conceptual LLRF design for 1.3GHz superconducting cavity

Post on 03-Jan-2016

72 views 5 download

Tags:

description

Conceptual LLRF design for 1.3GHz superconducting cavity. Qiu Feng ( PH.D Student ) LLRF members : Wang Guang wei, Sun YI Liu Rong, Zeng Ri hua, Qiu Feng Lin Hai ying, Wang Qun yao Mini-workshop of 1.3GHz/9cell superconducting cavity IHEP Dec. 2 2009. Content. - PowerPoint PPT Presentation

transcript

Conceptual LLRF design for1.3GHz superconducting cavity

Qiu Feng ( PH.D Student )LLRF members :

Wang Guang wei, Sun YI Liu Rong, Zeng Ri hua, Qiu Feng Lin Hai ying, Wang Qun yao

Mini-workshop of 1.3GHz/9cell superconducting cavity

IHEP Dec. 2 2009

• 1. Target and the whole Block Diagram

• 2. Signal and Clock

• 3. RF Down-Conversion and Up-Conversion

• 4. Algorithm

Content

• 1. Requirements on field stability (approximately RMS requirements)

0.1% for Amplitude and 0.1° for Phase

• 2. Chain secure

• 3. Take fully advantages of DSP technology

1. Target and the whole Block Diagram

1. Target and the whole Block Diagram

LO

Vref

IF

DA

1

Am

p&P

hase

NC

O1

outp

ut

NC

O2

outp

ut

RF

LO

Sample

1300MHz

10M

Hz

refe

renc

e

1301MHz

240MHz

FPGA

NET ROMUSB

PC

ADC

ADC

ADC

ADC

120MHz

Vcav_in-

Vcav_in+

Sample

Down Conversion

Signal & Clock

Amp&Phase ModulatorRF

LO

Clock

1

2

3

4ADC ClockDAC Clock

120MHz

Cal

ibra

tio

n

Digital Board

Monitor

MotorDriver

M

RF Interlock

Piezo Driver

FeedForward Table

A&P_Set Table

Beam Table Test Table

Interlock Interface

Motor Control

Piezo Control

Vload+

Vload-

Klystron

Vkly-Vkly+

Monitor

ADC

ADC

ADC

ADC

Vcav_in-

Vcav_in+

Vload+

Vload-

Vkly-

Vkly+

Vcav_out

Vcav_out

Vref

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Cavity Model&Tuner

LLRF Switch

30MHz

1330MHz 1300MHz

30MHz 30MHz

1MHz

1MHz

1MHz

Klystron

DA

1

DA

1

5

6

7

8

1

2

3

4

5

6

7

8

• 1. Super-Sampling

• LO: 1301MHz

• Sampling Clock: 100MHz

• 2. RF signal and Sampling Clock

• RF signal source: 8663A

• (0.1MHz~2560MHz).

• Sampling Clock: 33220A

• Reference signal : 10MHz

2. Signal and Clock

2. Signal and Clock

• How to generate the Local Frequency?

• The AD9858 can generate the 101MHz signal with its Clock(1300MHz RF signal).

• After twice frequency Mixing, we can get the 1301MHz Local signal, then we can obtain the 1MHz IF signal by mixing the RF and LO.

2. Signal and Clock

The overall diagram of Clock structure

8663A

33220A

AD9858

RF

LO

Sample/ADC Clock

1300MHz

10MHz

10M

Hz

refe

renc

e

101MHz

1301MHz

1300MH

z

100MH

z

33220A12MHz

240MHz

120MHz DAC Clock

120MHz

TA1077A(1420M)

TA0840A(1300M)

3. RF down conversion and up conversion

• Analog down conversion

ADC

ADC

ADC

ADC

Monitor

ADC

ADC

ADC

ADC

Vcav_in-

Vcav_in+

Vload+

Vload-

Vkly-

Vkly+

Vcav_out

Vref

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

3. RF receiver

• Analog up conversion

DA

1

DA

2

RF RF

Amp Control

Phase Control

NCO1 output

NCO2 output

30M(BLP30+) 30M(BLP30+)

1330M(TA0375A)

SAW SAW

1300M(TA0840A)

4. Algorithm

• Digital down conversion

• How to generate IQ?

• Scheme1(experienced)

4. Algorithm

• Feedback Algorithm

4. Algorithm

Simulink of 500MHz experiment

4. Algorithm

• Feedforward Compensation

• The feed forward can supplement the feedback. it can suppress the known repetitive error.

4. Algorithm

• Digital up Conversion

• Scheme1(experienced)

Cordic

NCO1

NCO2

Amp Word

Pha Word

DA1

DA2

I

Q

PI

PI

4. Algorithm

• Digital up Conversion

• Scheme2

DA1

PI

PI

NCO1IF

4. Algorithm

• Tuner control

Error Source speed solution

Micro-Phonics

slow feedback

Beam Loading

slow feed forward + feedback

Lorentz De-tuning

fast feedback

The cause of de-tuning

4. Algorithm

• Tuner control

• For CW working mode , the diagram above is appropriate , for pulse working mode, the table test need to be done in the near future.