Contour Tbtrans

Post on 29-Dec-2015

82 views 4 download

Tags:

transcript

Using TranSIESTA The integration contour Using tbtrans

Using TranSIESTA (II): Integration contour andtbtrans

Frederico D. Novaes

December 15, 2009

Using TranSIESTA The integration contour Using tbtrans

Outline

Using TranSIESTA

The integration contourElectron density from GFWhy go complex ?The non-equilibrium situation

Using tbtrans

Using TranSIESTA The integration contour Using tbtrans

Outline

Using TranSIESTA

The integration contourElectron density from GFWhy go complex ?The non-equilibrium situation

Using tbtrans

Using TranSIESTA The integration contour Using tbtrans

It is simples to use: few (simple) key concepts

• Simple to use (doesn’t mean simple theory). Few concepts :

1. The scattering region setup

2. The electrode calculation (and possibleuse of buffer atoms)

3. The energy contour parameters

∫∞

−∞

G<(E )dE

Using TranSIESTA The integration contour Using tbtrans

Outline

Using TranSIESTA

The integration contourElectron density from GFWhy go complex ?The non-equilibrium situation

Using tbtrans

Using TranSIESTA The integration contour Using tbtrans

The dual basis

• A Dual Set may be defined,

〈φµ|φν〉 = Sµ,ν −→ 〈φµ|φν〉 = δµν

• Easier to obtain expressions,

1 =∑

µ

|φµ〉〈φµ| =∑

µ

|φµ〉〈φµ|

H |ψi〉 = Ei |ψi〉 −→∑

µ

H |φµ〉〈φµ|ψi 〉 = Ei

µ

|φµ〉〈φµ|ψi〉

−→∑

µ

Hν,µcµi = Ei

µ

Sν,µcµi

δνξ =

µ,i

〈φξ|φµ〉〈φµ|ψi 〉〈ψi |φ

ν〉 =∑

µ,i

Sξ,µcµi cν∗

i

Using TranSIESTA The integration contour Using tbtrans

Calculus of Complex Variables

• From complex analysis (residue theorem),

C

f (z)dz = 2πı∑

k

Resz=zkf (z)

f (z) =

∞∑

j=−∞

cj(z)(z − zk)j −→ Resz=zk

f (z) = c−1(zk)

• A useful relation may then be computed,

∫ b

a

f (E )

E+ − E0dE = P

[∫ b

a

f (E )

E − E0dE

]

︸ ︷︷ ︸

−ıπf (E0)

limδ→0

[∫ E0−δ

a

f (E )

E − E0dE +

∫ b

E0+δ

f (E )

E − E0dE

]

Using TranSIESTA The integration contour Using tbtrans

Time Reversal Symmetry

• Considering the time dependent Schroedinger equation, and thereality of H,

ı~∂ψ

∂t= Hψ ⇒ ı~

∂ψ∗

∂(−t)= Hψ∗

Hψ = Eψ ⇒ Hψ∗ = Eψ∗

• Two possibilities,

1. ψ and ψ∗ are LI ⇒ ”doubles” the E degeneracy

2. ψ and ψ∗ are not LI ⇒ ψ = ψ∗ (Real) E ”not” degenerate

Using TranSIESTA The integration contour Using tbtrans

Density Matrix in SIESTA

• In practice, in SIESTA, the Kohn-Sham orbitals ψi (r) are expandedin a set of (real) localized basis,

ψi (r) =∑

µ

cµi φµ(r)

• The electron density is then,

ρ(r) =∑

i

ni

(∑

µ,µ′

cµ∗i c

µ′

i φµ(r)φµ′ (r)

)

=∑

µ,µ′

ρµ,µ′φµ(r)φµ′ (r)

• The solution consist in finding the Density Matrix (.DM file),

ρµ,µ′ =∑

i

nicµ∗i c

µ′

i =∑

i

niRe[cµ∗i c

µ′

i ′ ]

︸ ︷︷ ︸

T .R.S.

Using TranSIESTA The integration contour Using tbtrans

Spectral Representation of Gr(E )

• The G r (E ) may be written as,

G rµ,ν(E ) =

i

cµi cν∗

i

E+ − Ei

((

E+S − H)

G(r)(E )

)

ξ,ν

=∑

µ

(

E+Sξ,µ − Hξ,µ

)(∑

i

cµi cν∗

i

E+ − Ei

)

=∑

µ

(

E+Sξ,µ − EiSξ,µ

)(∑

i

cµi cν∗

i

E+ − Ei

)

=∑

µ

i

Sξ,µcµi cν∗

i = δνξ

Using TranSIESTA The integration contour Using tbtrans

The DM from GFs

• If we integrate,

∫∞

−∞

nFD(E )G rµ,ν(E )dE = ???

∫∞

−∞

nFD(E )[∑

i

cµi cν∗

i

E+ − Ei

]

dE =∑

i

cµi cν∗

i

∫∞

−∞

nFD(E )

E+ − Ei

dE

︸ ︷︷ ︸

P[ ]−ıπnFD(Ei )

⇛ Im

[∫

−∞

nFD(E )G rµ,ν(E )dE

]

= −π∑

i

cµi cν∗

i ni

⇛ ρ = −1

πIm

[∫

−∞

nFD(E )Gr (E )dE

]

Using TranSIESTA The integration contour Using tbtrans

Equilibrium DM

• Two ways of computing the Density Matrix,

1. From the Kohn-Sham orbitals,

ρ =X

i

nic∗

i ci

2. From the Retarded Green’s Function

ρ = −1

πIm

"

Z

−∞

nFD(E)Gr(E)dE

#

• With GFs a Self Consistent procedure can be used in the same wayas the “standard” Kohn-Sham orbitals

Using TranSIESTA The integration contour Using tbtrans

The TranSIESTA contour

• TS.ComplexContour.Emin

• TS.ComplexContour.NCircle

• TS.ComplexContour.NLine

• TS.ComplexContour.NPoles

Using TranSIESTA The integration contour Using tbtrans

Smooth in the complex plane

• G r (E ) is smoother in the complex plane.

• Smaller number of points to get accurate results.

• As an example, the spectral function (DOS),

Using TranSIESTA The integration contour Using tbtrans

Things we know ...

• The G r (E ) is smoother for E = Er + ıEc = Z ,

G rµ,ν(Z ) =

i

cµi cν∗

i

Z − Ei

• G r (Z ) is analytic for Im[Z ] > 0.

• nFD(E ) has poles at known places and known residues,

nFD(Z ) =(

eZ−EfkB T

︸ ︷︷ ︸

→−1

+1)−1

Zj = Ef + ıkBT (2j + 1)π, j = 0,±1,±2, . . .

Using TranSIESTA The integration contour Using tbtrans

Contour Integration: Equilibrium• The integral may be obtained in a contour integration,

nFD(E )G r (E )dE =

C

nFD(Z )G r (Z )dZ − 2πıkBT

Np∑

j=1

G r (Zj)

Using TranSIESTA The integration contour Using tbtrans

Default values in TS

• TS.ComplexContour.Emin = -3.0 Ry

• TS.ComplexContour.NCircle = 24

• TS.ComplexContour.NLine = 6

• TS.ComplexContour.NPoles = 6

• DANGER : Start the contour bellow the lowest eigenvalue of thesystem !

• For that a good practice is to always do first a SIESTAcalculation and check the eigenvalues (.EIG file)

Using TranSIESTA The integration contour Using tbtrans

From NEGF

• In the non-equilibrium case, the charge density is given by,

ρCC =1

∫ (

G rCC (E )

(f EFD(E )ΓE (E ) + f D

FD(E )ΓD(E ))G a

CC (E ))

dE

• This integrand is however non analytic: presence of retarded andadvanced.

• The integration could be done at the real axis, but ... too expensive.

• The solution is make a transformation, and get,

ρCC = ρeqCC + ρ

neqCC

ρeqCC = −

1

πIm[

f EFD(E )G r

CC (E )dE ]

ρneqCC =

1

G rCC (E )ΓD(E )G a

CC (E )(f DFD(E ) − f E

FD(E ))dE

Using TranSIESTA The integration contour Using tbtrans

Final remarks on contours

• The integration on the bias range can be more demanding. This iscontroled by the flag: TS.biasContour.NumPoints

• If you look at the .CONTOUR file (with bias), you’ll see somethinglike this,

Using TranSIESTA The integration contour Using tbtrans

Outline

Using TranSIESTA

The integration contourElectron density from GFWhy go complex ?The non-equilibrium situation

Using tbtrans

Using TranSIESTA The integration contour Using tbtrans

What is tbtrans ?

• The current I is obtained by the relation,

I =e

h

∫(f EFD(E ) − f D

FD(E ))Tr [ΓE (E )G r (E )ΓD(E )G a(E )]︸ ︷︷ ︸

T (E)

dE

• These matrices depend only on the Hamiltonian of the Scatteringsetup that was stored in a TranSIESTA calculation.

=⇒ Transport properties are obtained with a post prcessing code:tbtrans

Using TranSIESTA The integration contour Using tbtrans

How to use it

I =e

h

∫(f EFD(E ) − f D

FD(E ))Tr [ΓE (E )G r (E )ΓD(E )G a(E )]︸ ︷︷ ︸

T (E)

dE

• TranSIESTA stores the Hamiltonian (and Overlap) in files .TSHS

• tbtrans will need the electrode’s .TSHS file(s), and the scatteringregion TSHS.

• The energy interval is defined by TS.TBT.Emin, TS.TBT.Emax

• To calculate the current be sure to define the energy interval bigenough

• The number of points (mesh) in this interval is defined byTS.TBT.NPoints

• For the mesh, also, be sure to have a sufficiently dense mesh

Using TranSIESTA The integration contour Using tbtrans

Remark on k-points sampling• Warning: Even if the real-space Hamiltonian is sufficiently converged

for a given k-point sampling, the transmission function might not befor the same sampling.