Correlated: R 2 = 0.90 un-correlated Correlated: R 2 = 0.96 Correlated: R 2 = 0.70 Evidence for...

Post on 14-Jan-2016

237 views 0 download

Tags:

transcript

Dissolved Phase

[PC

B]

(pg

/L)

0

20

40

60

80

Gaseous Phase

[PC

B]

(pg

/m3)

0

10

20

30

SPM Phase

[PC

B]

(pg

/L)

0

20

40

60

80

Phytoplankton Phase

18

16

+3

23

12

82

24

54

65

2+

43

49

47

+4

84

43

7+

42

41

+7

16

44

07

47

0+

76

66

+9

59

15

6+

60

+8

99

2+

84

10

19

98

39

78

7+

81

85

+1

36

11

0+

77

82

15

11

35

+1

44

+1

47

+1

24

14

9+

12

3+

10

71

18

14

61

53

+1

32

10

51

41

+1

79

16

3+

13

81

58

17

8+

12

91

87

+1

82

18

31

85

17

41

77

20

2+

17

1+

15

61

80

19

91

70

+1

90

20

12

03

+1

96

19

5+

20

81

94

20

6

[PC

B]

(pg

/L)

0

20

40

60

80

Aerosol Phase

[PC

B]

(pg

/m3)

0.0

.1

.2

.3

Correlated:

R2 = 0.90

un-correlated

Correlated:

R2 = 0.96

Correlated:

R2 = 0.70

Evidence for Gas-Phase Driven Phytoplankton accumulation of PCBs

Air-Water-Phytoplankton Exchange of POPs

Air-water exchange

Water-phytoplankton exchange

CA

MLD CW CP

FWP

FAW

W

AAWAW C

HC

kF'

Pu

GdWWPWP C

kkk

CkF

-J. Dachs, S.J. Eisenreich, J.E. Baker, F.C. Ko, J.D. Jeremiason. Environ. Sci. Technol. 33, 3653-3660, 1999.

Vertical Flux

P

u

GdSinkSink C

kkk

kF

FSink

0 20 40 60 80 1000

1500

3000

4500

6000

7500

9000

0 20 40 60 80 100

CP (

pg

g-1

)

0

500

1000

1500

2000

2500

3000

June July August June July August

Lake 227 Lake 110

1994 1994

0 20 40 60 80 1000

1500

3000

4500

6000

7500

9000

0 20 40 60 80 100

CP (

pg

g-1

)

0

500

1000

1500

2000

2500

3000

June July August June July August

Lake 227 Lake 110

1994 1994

Observed

Model

Air-Water Exchange Controls Aquatic Concentrations of POPs(Experimental Lakes Area)

Phytoplankton concentrations of PCB 52

Proceso de destilación global

Global Atmospheric Depositional Processes

270 275 280 285 290 295 300 305

180 360 540 720

60

120

180

240

300

360

90N

60N

30N

0

30S

60S

90S

180W 90W 0 90E 180E

273 275 280 285 290 295 300 305T (K)

Temperature

-90

-60

-30

0

30

60

90

0.000 0.004 0.008 0.012

H'

Lat

itu

d

Henry’s Law ConstantPCB 52

Air-Water Exchange

W

AAWAW C

HC

kF'

Lat

itu

de

¿Qué explica la distribución global de loscontaminantes Orgánicos?

Temperatura Productividad primaria

(NASA Goddard Space Flight Center; www.gsfc.nasa.gov)

270 275 280 285 290 295 300 305

180 360 540 720

60

120

180

240

300

360

90N

60N

30N

0

30S

60S

90S

0 5 10 15

180 360 540 720

60

120

180

240

300

360

90N

60N

30N

0

30S

60S

90S

180W 90W 0 90E 180E 180W 90W 0 90E 180E

273 275 280 285 290 295 300 305T (K)

0 5 10 15U10 ( m s-1)

Temperature Wind Speed

Remote Sensing MeasurementsOctober-December 1998

0 0.5 1 1.5 2 2.5 3 3.5

180 360 540 720

60

120

180

240

300

360

180W 90W 0 90E 180E

90N

60N

30N

0

30S

60S

90S

0 0.5 1 1.5 2 2.5 3 3.5 kAW (m d-1)

-90

-75

-60

-45

-30

-15

0

15

30

45

60

75

90

0 1 2 3

kAW (m d-1)

La

titu

de

Global Variability of kAW

PCB 52

Air-Water Exchange

W

AAWAW C

HC

kF'

Air-Water Fluxes

Air-Water-Phytoplankton Exchange of POPs

Air-water exchange

Water-phytoplankton exchange

CA

MLD CW CP

FWP

FAW

W

AAWAW C

HC

kF'

Pu

GdWWPWP C

kkk

CkF

-J. Dachs, S.J. Eisenreich, J.E. Baker, F.C. Ko, J.D. Jeremiason. Environ. Sci. Technol. 33, 3653-3660, 1999.

k WP = Biomass ku MLD

Vertical Flux

P

u

GdSinkSink C

kkk

kF

FSink

Gd

uOMSink kk

kFk

0 100 200 300 400 500 600 700 800 900

180 360 540 720

60

120

180

240

300

360

90N

60N

30N

0

30S

60S

90S

180W 90W 0 90E 180E

0 100 200 300 400 500 600 700 800 900MLD (m)

Mixed Layer Depth

0 0.5 1 1.5 2 2.5 3 3.5 4

180 360 540 720

60

120

180

240

300

360

90N

60N

30N

0

30S

60S

90S

180W 90W 0 90E 180E

0 1 2 3 4Chlorophyll ( mg m-3)

Chlorophyll

Remote Sensing Measurements

Pu

GdWWPWP C

kkk

CkF

Water-Phytoplankton Fluxes

uWP kMLDBiomassk

0 1 2 3 4 5 6 7 8 9 10

180 360 540 720

60

120

180

240

300

360

180W 90W 0 90E 180E

90N

60N

30N

0

30S

60S

90S

0 2 4 6 8 10kWP (m d-1)

Global Variability of kWP

PCB 52

-90

-75

-60

-45

-30

-15

0

15

30

45

60

75

90

0 5 10 15

kWP (m d-1)

La

titu

de

Water-Phytoplankton Exchange

Pu

GdWWPWP C

kkk

CkF

Water-Phytoplankton Fluxes

Air-Water-Phytoplankton Exchange of POPs

Air-water exchange

Water-phytoplankton exchange

MLD

W

AAWAW C

HC

kF'

P

u

dWWPWP C

kk

CkF

-J. Dachs, S.J. Eisenreich, J.E. Baker, F.C. Ko, J.D. Jeremiason. Environ. Sci. Technol. 33, 3653-3660, 1999.

k WP = Biomass ku MLD

Vertical Flux

P

u

dSinkSink C

kk

kF

CA

CW CP

FWP

FAW

FSink

d

uOMSink k

kFk

(Lohmann, R., Ockenden, W.A., Shears, J., Jones, K.C. Environ. Sci. Technol. 2001)

Atmospheric Concentrations of PCBs, Dioxins and FuransAtlantic Ocean Transect (52N-74S)

-90

-75

-60

-45

-30

-15

0

15

30

45

60

75

90

0 30 60 90 120 150

CA (pg m-3)

Lati

tud

e

-90

-75

-60

-45

-30

-15

0

15

30

45

60

75

90

0 5 10 15

CA (pg m-3)

La

titu

de

-90

-75

-60

-45

-30

-15

0

15

30

45

60

75

90

0 50 100 150

CA (pg m-3)

La

titu

de

PCB 52 PCB 180 Cl4DD

North

South

Lat

itud

e

Lat

itud

e

Lat

itud

e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

180 360 540 720

60

120

180

240

300

360

180W 90W 0 90E 180E

90N

60N

30N

0

30S

60S

90S

ng m-2 d-1

Predicted Air-Water and Sinking Fluxes of PCBs, Dioxins and Furans

PCB 52

-90

-75

-60

-45

-30

-15

0

15

30

45

60

75

90

0 0.4 0.8 1.2 1.6 2

Flux (ng m-2d-1)

Lat

itu

de

Measured by Gustafsson, Gschwend and Buesseler, Environ. Sci. Technol. 31, 3544-3550, 1997

-90

-75

-60

-45

-30

-15

0

15

30

45

60

75

90

0 1 2 3

kAW, kSink (m d-1)

Latit

ude

-90

-75

-60

-45

-30

-15

0

15

30

45

60

75

90

0 1 2 3 4

kAW, kSink (m d-1)

Lat

itud

e

-90

-75

-60

-45

-30

-15

0

15

30

45

60

75

90

0 4 8 12 16 20

fA/fW

La

titu

de

PCB52

PCB180

PCB180PCB52

Latitudinal Variability of Air to Water Fugacity RatiosAtlantic Ocean

kAW

kAW

kSink

kSink

0

10

20

30

40

Ap

ril

Ma

y

Ju

ne

Ju

ly

Au

gu

st

Se

pt

Oct

No

v

De

c

Jan

Fe

br

Ma

rch

Ap

ril

Ma

y

250m

1440m

2850m

Benzofluoranthene Flux

ng m

-2 d

-1m

g m

-2 d

-1

0

100

200

300 Mass Flux

ng m

-2 d

-1

Biogeochemical Coupling of Atmospheric Deposition and Settling Fluxes

0

20

40

60

Settling Flux

Atmospheric Dep.

Atm. Dep.

Sed. Traps

L. Méjanelle, UPMC

PBDE and PAH atmospheric deposition

0

100

200

300

Au

g 0

8-S

ep

03

Se

p 0

3-1

5S

ep

15-

29

Se

p 2

9-O

ct 1

5O

ct 1

5-N

ov

05

No

v 0

5 -1

2N

ov

12-

20N

ov

20-

De

c 0

3D

ec

03-

12D

ec

12-

Jan

02

Jan

02-

15

Jan

15-

Fe

b 0

2F

eb

02-

18F

eb

18-

Mar

06

Mar

06

- A

pr

02

Ap

r 02

-15

Ap

r 15

-May

01

May

01

-Jun

02

Jun

02-

17

Jun

17-

Jul 2

2Ju

l 22

-Au

g 04

Au

g 0

4-2

3A

ug

23-

31

Au

g 3

1-S

ep

15

Se

p 1

5-O

ct 0

2O

ct 0

2-1

3O

ct 1

3-N

ov

04

No

v 0

4-10

No

v 1

2-25

No

v 2

5-D

ec

09

De

c 0

9-Ja

n 0

2Ja

n 0

2-2

0Ja

n 2

0-F

eb

21

Fe

b 2

1-A

pr 0

6A

pr

06-M

ay 0

5M

ay 0

5-

Jun

BDE 47

BDE 100

BDE 99

BDE 153

BDE 183

BDE 209

SUM PAH Flux

pg m-2 d-1

ng m-2 d-1

2001 2002 2003

Atmospheric Deposition of Polybrominated Biphenyl Ethers and Polycyclic Aromatic Hydrocabons

L. Méjanelle, UPMC

Persistent Organic Pollutants (POPs)

Lohmann, R., K. Breivik, J. Dachs, D. Muir. Environ. Poll. 2007

Legacy POPs Emerging POPs

0

150

300

450

600

750

T3 T9 T11 T13 T15 T16 R6 R14 R18

Co

nce

ntr

ació

(n

g/L

)

Antiinflammatories Lipid regulators Antidepressants

Antihistaminics Antibiotics B-blockers

T12

R14

R17

T16

T15

T9R1T3

R18

T8

R4R6

T7

T13

T11T10

T5

T2

TORTOSA

LLEIDAZARAGOZA

HUESCAMONZÓN

SABIÑÁNIGO

PAMPLONA

LOGROÑO

VITORIA

TUDELA

T12

R14

R17

T16

T15

T9R1T3

R18

T8

R4R6

T7

T13

T11T10

T5

T2

TORTOSA

LLEIDAZARAGOZA

HUESCAMONZÓN

SABIÑÁNIGO

PAMPLONA

LOGROÑO

VITORIA

TUDELA

T12

R14

R17

T16

T15

T9R1T3

R18

T8

R4R6

T7

T13

T11T10

T5

T2

TORTOSA

LLEIDAZARAGOZA

HUESCAMONZÓN

SABIÑÁNIGO

PAMPLONA

LOGROÑO

VITORIA

TUDELA

Emerging (non-regulated) POPs: Pharmaceuticals in the Ebro River

Atenolol

Sotalol

Metoprolol

Propranolol

Erythromycin

Azithromycin

Sulfamethaxole

Trimethoprim

Ofloxacin

Lansoprazole

Loratadine

Famotidine

Ranitidine

Carbamazepine

Fluoxetine

Paroxetine

Clofibric acid

Gemfibrozil

Bezafibrate

Pravastatin

Mevastatin

Ibuprofen

Naproxen

Ketoprofen

Indomethacine

Diclofenac

Acetaminophen

Mefenamic acid

Propyphenazone

b-blokersAntibioticsAntiulcer

agentsPsychiatric

drugs

Lipid regulatorand cholesterollowering statin

drugs

Analgesics and antiinflammatories

Atenolol

Sotalol

Metoprolol

Propranolol

Erythromycin

Azithromycin

Sulfamethaxole

Trimethoprim

Ofloxacin

Lansoprazole

Loratadine

Famotidine

Ranitidine

Carbamazepine

Fluoxetine

Paroxetine

Clofibric acid

Gemfibrozil

Bezafibrate

Pravastatin

Mevastatin

Ibuprofen

Naproxen

Ketoprofen

Indomethacine

Diclofenac

Acetaminophen

Mefenamic acid

Propyphenazone

b-blokersAntibioticsAntiulcer

agentsPsychiatric

drugs

Lipid regulatorand cholesterollowering statin

drugs

Analgesics and antiinflammatories

Barceló et al. Personal comunication

Perfluoroalkyl substances are globally distributed, anthropogenic contaminants.

Perfluoroalkyl acids (PFAs) are synthetic, perfluorinated, straight- or branched-chain organic acids characterized by a carboxylate or sulfonate moiety.

Surface treatment applications to provide soil, oil and water resistance to personal apparel and home furnishings (e.g. carpet cleaner and Goretex®). on paper products to provide grease, water, and oil resistance to plates, food containers, bags, and wrap (Teflon ®) aqueous film-forming foams (AFFF) for fire-fighting,

Air

(aerosol + gas phase)

Water

(particulate + dissolved phase)

Simultaneous samples

Plankton

Mediterranean sampling cruises (June 2006, May 2007)

POPs in the Mediterranean Sea

0

50

100

150

200

0,0

1,0

2,0

3,0

0,0

0,1

0,1

0,2

0,2

0

100

200

300

400

PAHs

PCBs

0

5

10

15

20

25

GAS PHASE IN AIR (ng/m3)GAS PHASE IN AIR (ng/m3)

DISSOLVED PHASE IN SURFACE WATER (pg/L)

PLANKTON (ng/g)

0,0

0,1

0,1

0,2

0

10

20

30

40

50

0

10

20

30

40

50

0

4

8

12

DISSOLVED PHASE IN SURFACE WATER (pg/L)

PARTICULATED PHASE IN SURFACE WATER (pg/L) PARTICULATED PHASE IN SURFACE WATER (pg/L)

PLANKTON (ng/g)

PARTICULATE PHASE IN AIR (ng/m3)

44ºN

30ºN

P2P3 P6P5

P7P10P9 P15

P14P12

P17

P11

P16

B3

B4B5

P1P4

P18

P23

P22

P21

P20

P19

P13P8

B1-2

5ºW 35ºW

44ºN

30ºN

P2P3 P6P5

P7P10P9 P15

P14P12

P17

P11

P16

B3

B4B5

P1P4

P18

P23

P22

P21

P20

P19

P13P8

B1-2

5ºW 35ºW

P2P3 P6P5

P7P10P9 P15

P14P12

P17

P11

P16

B3

B4B5

P1P4

P18

P23

P22

P21

P20

P19

P13P8

B1-2

5ºW 35ºW

TPAH = 0.24 B-0.57

R2 = 0.65

0

200

400

600

800

1000

1200

1400

0.E+00 1.E-05 2.E-05 3.E-05 4.E-05 5.E-05 6.E-05 7.E-05

Plankton biomass Kg (L-1)

To

tal

PA

Hs

(n

g d

w -1)

P21

TPAH = 0.24 B-0.57

R2 = 0.65

0

200

400

600

800

1000

1200

1400

0.E+00 1.E-05 2.E-05 3.E-05 4.E-05 5.E-05 6.E-05 7.E-05

Plankton biomass Kg (L-1)

To

tal

PA

Hs

(n

g d

w -1)

P21

PAH accumulation in plankton depends on planktonic biomass

(Berrojalbiz et al. 2010)

Trophic controls on PAH accumulation in plankton

(Berrojalbiz et al. 2010)

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

ClCl ClCl

The relationship between CP and the biomass (B) of the samples shows a negative exponential correlation BIOMASS DILUTION

CP = aB-bCP = aB-b

CWCP

CPCW

BIOMASS DILUTIONBIOMASS DILUTIONLow B

Trophic controls on PAH accumulation in plankton

(Berrojalbiz et al. 2010)

0

50

100

150

0.00 0.01 0.02 0.03 0.04 0.05

Crysene

0

50

100

150

200

250

300

0.00 0.01 0.02 0.03 0.04 0.05

Phenanthrene

0

20

40

60

0 0.01 0.02 0.03 0.04 0.05

Anthracene

-0.5

0

0.5

1

1.5

4.0 4.5 5.0 5.5 6.0 6.5

0

20

40

60

0 0.01 0.02 0.03 0.04 0.05

Benzo(a)pyrene

Biomass (mg L-1)

Biomass (mg L-1)

Con

cent

rati

on(n

gg-1

)C

once

ntra

tion

(ng

g-1)

KOW

-b

-b = -0.54 KOW + 3.5R2 = 0.66

0

50

100

150

0.00 0.01 0.02 0.03 0.04 0.05

Crysene

0

50

100

150

0.00 0.01 0.02 0.03 0.04 0.05

Crysene

0

50

100

150

200

250

300

0.00 0.01 0.02 0.03 0.04 0.05

Phenanthrene

0

50

100

150

200

250

300

0.00 0.01 0.02 0.03 0.04 0.05

Phenanthrene

0

20

40

60

0 0.01 0.02 0.03 0.04 0.05

Anthracene

0

20

40

60

0 0.01 0.02 0.03 0.04 0.05

Anthracene

-0.5

0

0.5

1

1.5

4.0 4.5 5.0 5.5 6.0 6.5

0

20

40

60

0 0.01 0.02 0.03 0.04 0.05

Benzo(a)pyrene

0

20

40

60

0 0.01 0.02 0.03 0.04 0.05

Benzo(a)pyrene

Biomass (mg L-1)

Biomass (mg L-1)

Con

cent

rati

on(n

gg-1

)C

once

ntra

tion

(ng

g-1)

KOW

-b

-b = -0.54 KOW + 3.5R2 = 0.66

dCZoo/dt = ku CW + kFood CW – kd CZoo – kEg CZoo – kMet CW/ BZoo

Is it due to PAH metabolization?

Trophic controls on POP accumulation in plankton

(Berrojalbiz et al. 2010)

SURFACE MIXED LAYER

PHOTICZONE

VERTICAL FLUXES

AIR-WATEREXCHANGE

Gas phase

Dissolvedphase

Foodchain

DEEPOCEAN

ATMOSPHERE

Particulate matter

Particulate phase

CA

CW

CP

Dissolvedphase

DEGRADATION

DEGRADATION

Particulate phase

Foodchain

Plankton

Plankton

Thermocline

SURFACE MIXED LAYER

PHOTICZONE

VERTICAL FLUXES

AIR-WATEREXCHANGE

Gas phase

Dissolvedphase

Foodchain

DEEPOCEAN

ATMOSPHERE

Particulate matter

Particulate phase

CA

CW

CP

Dissolvedphase

DEGRADATION

DEGRADATION

Particulate phase

Foodchain

Plankton

Plankton

Thermocline

Trophic controls on PCB accumulation in plankton

(Berrojalbiz et al. 2010)

0

0.5

1

1.5

2

4 5 6 7 8 9

-b = 0.42 KOW + 2.0R2 = 0.78

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.050

10

20

30

40

50

0 0.01 0.02 0.03 0.04 0.05

0

8

16

24

32

40

0 0.01 0.02 0.03 0.04 0.05

PCB 99PCB 101

PCB 180PCB 138

Biomass (mg L-1)

Con

cent

rati

on(n

gg-1

)

0

2

4

6

8

0 0.01 0.02 0.03 0.04 0.05

0

4

8

12

16

20

24

0 0.01 0.02 0.03 0.04 0.05

PCB 28 PCB 52

Biomass (mg L-1)

Con

cent

rati

on(n

gg-1

)

KOW

-b

0

0.5

1

1.5

2

4 5 6 7 8 9

-b = 0.42 KOW + 2.0R2 = 0.78

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.050

10

20

30

40

50

0 0.01 0.02 0.03 0.04 0.05

0

8

16

24

32

40

0 0.01 0.02 0.03 0.04 0.05

PCB 99PCB 101

PCB 180PCB 138

Biomass (mg L-1)

Con

cent

rati

on(n

gg-1

)

0

2

4

6

8

0 0.01 0.02 0.03 0.04 0.05

0

4

8

12

16

20

24

0 0.01 0.02 0.03 0.04 0.05

PCB 28 PCB 52

Biomass (mg L-1)

Con

cent

rati

on(n

gg-1

)

0

2

4

6

8

0 0.01 0.02 0.03 0.04 0.05

0

4

8

12

16

20

24

0 0.01 0.02 0.03 0.04 0.05

PCB 28 PCB 52

Biomass (mg L-1)

Con

cent

rati

on(n

gg-1

)

KOW

-b

Trophic controls on POP accumulation in plankton

(Berrojalbiz et al. 2010)

SURFACE MIXED LAYER

PHOTICZONE

VERTICAL FLUXES

AIR-WATEREXCHANGE

Gas phase

Dissolvedphase

Foodchain

DEEPOCEAN

ATMOSPHERE

Particulate matter

Particulate phase

CA

CW

CP

Dissolvedphase

DEGRADATION

DEGRADATION

Particulate phase

Foodchain

Plankton

Plankton

Thermocline

SURFACE MIXED LAYER

PHOTICZONE

VERTICAL FLUXES

AIR-WATEREXCHANGE

Gas phase

Dissolvedphase

Foodchain

DEEPOCEAN

ATMOSPHERE

Particulate matter

Particulate phase

CA

CW

CP

Dissolvedphase

DEGRADATION

DEGRADATION

Particulate phase

Foodchain

Plankton

Plankton

Thermocline

Trophic controls on HCHs and HCB accumulation in plankton

(Berrojalbiz et al. 2010)

Biomass (mg L-1)

0

4

8

12

16

0 0.01 0.02 0.03 0.04

α-HCH

0

4

8

12

0 0.02 0.04 0.06 0.08

γ-HCH

0

4

8

12

16

20

0 0.01 0.02 0.03 0.04

β-HCH

0

1

2

3

0 0.02 0.04 0.06 0.08

HCB

Biomass (mg L-1)

Con

cen

trat

ion

(ng

g-1)

y = -0.8296x + 4.2393

R2 = 0.9555

-0.8

-0.4

0

0.4

0.8

1.2

1.6

0 1 2 3 4 5 6

B = -0.83 KOW + 4.24R2 = 0.95

Con

cen

trat

ion

(ng

g-1)

B

KOW

Biomass (mg L-1)

0

4

8

12

16

0 0.01 0.02 0.03 0.04

α-HCH

0

4

8

12

16

0 0.01 0.02 0.03 0.04

α-HCH

0

4

8

12

0 0.02 0.04 0.06 0.08

γ-HCH

0

4

8

12

0 0.02 0.04 0.06 0.08

γ-HCH

0

4

8

12

16

20

0 0.01 0.02 0.03 0.04

β-HCH

0

4

8

12

16

20

0 0.01 0.02 0.03 0.04

β-HCH

0

1

2

3

0 0.02 0.04 0.06 0.08

HCB

0

1

2

3

0 0.02 0.04 0.06 0.08

HCB

Biomass (mg L-1)

Con

cen

trat

ion

(ng

g-1)

y = -0.8296x + 4.2393

R2 = 0.9555

-0.8

-0.4

0

0.4

0.8

1.2

1.6

0 1 2 3 4 5 6

B = -0.83 KOW + 4.24R2 = 0.95

y = -0.8296x + 4.2393

R2 = 0.9555

-0.8

-0.4

0

0.4

0.8

1.2

1.6

0 1 2 3 4 5 6

y = -0.8296x + 4.2393

R2 = 0.9555

-0.8

-0.4

0

0.4

0.8

1.2

1.6

0 1 2 3 4 5 6

y = -0.8296x + 4.2393

R2 = 0.9555

-0.8

-0.4

0

0.4

0.8

1.2

1.6

0 1 2 3 4 5 6

B = -0.83 KOW + 4.24R2 = 0.95

Con

cen

trat

ion

(ng

g-1)

B

KOW

Trophic controls on POP accumulation in plankton

(Berrojalbiz et al. 2010)

SURFACE MIXED LAYER

PHOTICZONE

VERTICAL FLUXES

AIR-WATEREXCHANGE

Gas phase

Dissolvedphase

Foodchain

DEEPOCEAN

ATMOSPHERE

Particulate matter

Particulate phase

CA

CW

CP

Dissolvedphase

DEGRADATION

DEGRADATION

Particulate phase

Foodchain

Plankton

Plankton

Thermocline

SURFACE MIXED LAYER

PHOTICZONE

VERTICAL FLUXES

AIR-WATEREXCHANGE

Gas phase

Dissolvedphase

Foodchain

DEEPOCEAN

ATMOSPHERE

Particulate matter

Particulate phase

CA

CW

CP

Dissolvedphase

DEGRADATION

DEGRADATION

Particulate phase

Foodchain

Plankton

Plankton

Thermocline

CG

CWCP

CAAir-WaterExchange

Water-Particle Partitioning

Gas-Particle Partitioning

Dry Deposition

Wet Deposition

Vertical Fluxes

Advection

Bioaccumulation

Continental Inputs

Atmospheric Transport

Degradation

Environmental fate of organic pollutants

Major Permanent sinks:

- Ocean interior (sediments, deep waters)

- Atmospheric OH degradation

Selective Sequestration of Atmospheric POPs in Sediments from High Mountain

Lakes

(Grimalt et al. Environ. Sci. Technol. 2001)

Inventories in sediments vs. Temperature

Mean annual T (K) PCB 28 PCB 52 PCB 101 PCB 153

Sediment inventories (ng cm-2) Model 274 (T-2) 0.0043 0.030 0.56 2.82 276 (T measured) 0.0035 0.022 0.36 1.67 280 (T+4) 0.0025 0.013 0.15 0.55 Slope of inventory vs. 1000/T 0.022 0.21 5.0 28 R2 0.993 0.991 0.987 0.981 Measured slope (ref x) ns1 ns ns 6.7 1

(Meijer, S. et al. Environ. Pollut. 2006,

Meijer et al. Environ Pollut.2009)

Meltwater input

CWCP

Dry Deposition

Sinking

Ca(gas)Ca(part)

Resuspension

Air-WaterExchange

Diffusion

Wet Deposition (snow / rain)

CS

Burial

Cpore

Uptake

Depuration

Meltwater input

CWCP

Dry Deposition

Sinking

Ca(gas)Ca(part)

Resuspension

Air-WaterExchange

Diffusion

Wet Deposition (snow / rain)

CS

Burial

Cpore

Uptake

Depuration

Selective Sequestration of Atmospheric POPs in Sediments from a modeled Lake (Lake Redó, Pyrenees Mountains)

Controls on the Sequestration of atmospheric POPs in Sediments from

High Mountain Lakes(Lake Redo, Pyrenees Mountains)

(Meijer, S. et al. Environ. Pollut.. 2009)

Meltwater input

CWCP

Dry Deposition

Sinking

Ca(gas)Ca(part)

Resuspension

Air-WaterExchange

Diffusion

Wet Deposition (snow / rain)

CS

Burial

Cpore

Uptake

Depuration

Meltwater input

CWCP

Dry Deposition

Sinking

Ca(gas)Ca(part)

Resuspension

Air-WaterExchange

Diffusion

Wet Deposition (snow / rain)

CS

Burial

Cpore

Uptake

Depuration

k’W-Sed/k’W-Air = 2.5

Fluxes in mg y-1

k’W-Sed/k’W-Air = 0.5