Cosmological black holes and self-gravitating fields from exact...

Post on 05-Mar-2021

1 views 0 download

transcript

D. C. Guariento Moriond Cosmology 2014 – 1

Cosmological black holes and self-gravitating

fields from exact solutions

Daniel C. Guariento

in collaboration with N. Afshordi, A. M. da Silva, M. Fontanini,

E. Papantonopoulos and E. Abdalla

based on [1207.1086], [1212.0155], [1312.3682], [1404.xxxx]

Motivation

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 2

Exact solutions of Einstein equations

Black holes in the presence of self-gravitating matter

Motivation

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 2

Exact solutions of Einstein equations

Black holes in the presence of self-gravitating matter

Two competing effects:

Gravitationally bound objects

Expanding universe

Motivation

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 2

Exact solutions of Einstein equations

Black holes in the presence of self-gravitating matter

Two competing effects:

Gravitationally bound objects

Expanding universe

Coupling between local effects and cosmological evolution

Causal structure

Interaction through Einstein equations

Motivation

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 2

Exact solutions of Einstein equations

Black holes in the presence of self-gravitating matter

Two competing effects:

Gravitationally bound objects

Expanding universe

Coupling between local effects and cosmological evolution

Causal structure

Interaction through Einstein equations

Field source:

Consistency analysis

Evolution and interaction from equations of motion

The McVittie metric

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 3

Cosmological black holes: McVittie solution [McVittie, MNRAS 93,325 (1933)]

ds2 = −

(

1− m2a(t)r

)2

(

1 + m2a(t)r

)2dt2+a2(t)

(

1 +m

2a(t)r

)4(dr2 + r2dΩ2

)

The McVittie metric

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 3

Cosmological black holes: McVittie solution [McVittie, MNRAS 93,325 (1933)]

ds2 = −(1− m

2r

)2

(1 + m

2r

)2dt2 +

(

1 +m

2r

)4 (dr2 + r2dΩ2

)

a(t) constant: Schwarzschild metric

The McVittie metric

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 3

Cosmological black holes: McVittie solution [McVittie, MNRAS 93,325 (1933)]

ds2 = −dt2 + a2(t)(dr2 + r2dΩ2

)

a(t) constant: Schwarzschild metric

m = 0: FLRW metric

The McVittie metric

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 3

Cosmological black holes: McVittie solution [McVittie, MNRAS 93,325 (1933)]

ds2 = −

(

1− m2a(t)r

)2

(

1 + m2a(t)r

)2dt2+a2(t)

(

1 +m

2a(t)r

)4(dr2 + r2dΩ2

)

a(t) constant: Schwarzschild metric

m = 0: FLRW metric

Unique solution that satisfies

Spherical symmetry

Perfect fluid

Shear-free

Asymptotically FLRW

Singularity at the center

Metric features

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 4

Past spacelike singularity at a = m2r

Ricci scalar

R = 12H2 + 6H

(m+ 2ar

m− 2ar

)

where H(t) ≡ a/a

Metric features

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 4

Past spacelike singularity at a = m2r

Ricci scalar

R = 12H2 + 6H

(m+ 2ar

m− 2ar

)

where H(t) ≡ a/a

Fluid has homogeneous density

ρ(t) =3

8πH2

Expansion is homogeneous (Hubble flow) and shear-free

Metric features

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 4

Past spacelike singularity at a = m2r

Ricci scalar

R = 12H2 + 6H

(m+ 2ar

m− 2ar

)

where H(t) ≡ a/a

Fluid has homogeneous density

ρ(t) =3

8πH2

Expansion is homogeneous (Hubble flow) and shear-free

Pressure is inhomogeneous

p(r, t) =1

[

−3H2 + 2H

(m+ 2ar

m− 2ar

)]

Areal radius coordinates

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 5

Causal structure is more easily seen on areal radius coordinates

[N. Kaloper, M. Kleban, D. Martin, 1003.4777]

ds2 = −(

1− 2m

r

)2

dt2 +

dr

1− 2mr

−Hrdt

2

+ r2dΩ2

Areal radius coordinates

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 5

Causal structure is more easily seen on areal radius coordinates

[N. Kaloper, M. Kleban, D. Martin, 1003.4777]

ds2 = −(

1− 2m

r

)2

dt2 +

dr

1− 2mr

−Hrdt

2

+ r2dΩ2

Apparent horizons: zero expansion of null radial geodesics

(dr

dt

)

±= R (rH ±R) = 0

+ outgoing

− ingoing

Areal radius coordinates

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 5

Causal structure is more easily seen on areal radius coordinates

[N. Kaloper, M. Kleban, D. Martin, 1003.4777]

ds2 = −(

1− 2m

r

)2

dt2 +

dr

1− 2mr

−Hrdt

2

+ r2dΩ2

Apparent horizons: zero expansion of null radial geodesics

(dr

dt

)

±= R (rH ±R) = 0

+ outgoing

− ingoing

Only ingoing geodesics have a solution: 1− 2mr

−H(t) r2 = 0

r+ Outer (cosmological) horizon

r− Inner horizon

If H(t) → H0 for t → ∞ apparent horizons become

Schwarszchild-de Sitter event horizons (r− → r∞)

Light cones and apparent horizons

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 6

0

tmin

t

2m r

rout

Light cones and apparent horizons

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 6

0

tmin

t

2m r

rout

rin

Light cones and apparent horizons

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 6

0

tmin

t

2m r

routrinr+r-

Light cones and apparent horizons

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 6

0

tmin

t

2m r

r+r-rinrout

Asymptotic behavior

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 7

Inner horizon is an anti-trapping surface for finite coordinate times

Asymptotic behavior

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 7

Inner horizon is an anti-trapping surface for finite coordinate times

Singular surface r∗ = 2m lies in the past of all events (McVittie big

bang)d

dt(r − r∗) = RrH +O

(R2)> 0

Asymptotic behavior

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 7

Inner horizon is an anti-trapping surface for finite coordinate times

Singular surface r∗ = 2m lies in the past of all events (McVittie big

bang)d

dt(r − r∗) = RrH +O

(R2)> 0

If H0 > 0 the inner horizon r∞ is traversable in finite proper time

Black hole at Shwarzschild-de Sitter limit

Asymptotic behavior

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 7

Inner horizon is an anti-trapping surface for finite coordinate times

Singular surface r∗ = 2m lies in the past of all events (McVittie big

bang)d

dt(r − r∗) = RrH +O

(R2)> 0

If H0 > 0 the inner horizon r∞ is traversable in finite proper time

Black hole at Shwarzschild-de Sitter limit

If H0 = 0, some curvature scalars become singular at r∞

Possibly no BH interpretation at Schwarzschild limit

[K. Lake, M. Abdelqader, 1106.3666]

Penrose diagrams

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 8

Geodesic completion with Schwarzschild-de Sitter

i+

b +i0

+

r = 0

r = 2m

( -)

r+r-

Penrose diagrams

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 8

Geodesic completion with Schwarzschild-de Sitter

<

>

Penrose diagrams

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 8

Geodesic completion with Schwarzschild-de Sitter

i+

b +i0

+

-

+

-

r = 0

r = 0

r = 2m

( -)

r+r-

McVittie with compact Φ

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 9

i+

b +i0

+

r = 0

r = 2m

( -)

r+r-

McVittie with compact Φ

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 9

i+

-i0 +i0

+

+

-

r = 0

r = 2m

te

b

( -)

r+r-

Convergence to H0

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 10

Causal structure depends on cosmological history

Horizon behavior at t → ∞ depends on the set Φ(H−)[A. M. da Silva, M. Fontanini, DCG, 1212.0155]

Convergence to H0

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 10

Causal structure depends on cosmological history

Horizon behavior at t → ∞ depends on the set Φ(H−)[A. M. da Silva, M. Fontanini, DCG, 1212.0155]

Causal structure of McVittie depends on how fast H → H0.

Convergence to H0

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 10

Causal structure depends on cosmological history

Horizon behavior at t → ∞ depends on the set Φ(H−)[A. M. da Silva, M. Fontanini, DCG, 1212.0155]

Causal structure of McVittie depends on how fast H → H0.

Example: cold dark matter (“dust”) and cosmological constant

H(t) = H0 coth

(3

2H0t

)

Convergence depends on the sign of η

η ≡ R(r∞)

3

[R′(r∞)

H0− 1

]

− 1

η depends only on the product λ ≡ mH0, (0 < λ < 13√3

)

Cosmological history

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 11

-1

-0.5

0

0.5

1

1.5

0 0.0755 13 3

= m H0

< 0

(-) compact

> 0

(-) non-compact

= 0

Scalar fields

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 12

McVittie is also a solution of a scalar field with a modified kinetic term

minimally coupled to GR

[E. Abdalla, N. Afshordi, M. Fontanini, DCG, E. Papantonopoulos, 1312.3682]

Scalar fields

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 12

McVittie is also a solution of a scalar field with a modified kinetic term

minimally coupled to GR

[E. Abdalla, N. Afshordi, M. Fontanini, DCG, E. Papantonopoulos, 1312.3682]

Gravity and Cuscuton field

S =

d4x√−g

[1

2R+ µ2

√X − V (φ)

]

with X = −1

2φ;αφ;α

Scalar fields

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 12

McVittie is also a solution of a scalar field with a modified kinetic term

minimally coupled to GR

[E. Abdalla, N. Afshordi, M. Fontanini, DCG, E. Papantonopoulos, 1312.3682]

Gravity and Cuscuton field

S =

d4x√−g

[1

2R+ µ2

√X − V (φ)

]

with X = −1

2φ;αφ;α

Field has constant Kαα on homogeneous surfaces

Kαα =

1

µ2

dV

dφ= 3H(t)

Scalar fields

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 12

McVittie is also a solution of a scalar field with a modified kinetic term

minimally coupled to GR

[E. Abdalla, N. Afshordi, M. Fontanini, DCG, E. Papantonopoulos, 1312.3682]

Gravity and Cuscuton field

S =

d4x√−g

[1

2R+ µ2

√X − V (φ)

]

with X = −1

2φ;αφ;α

Field has constant Kαα on homogeneous surfaces

Kαα =

1

µ2

dV

dφ= 3H(t)

Einstein equations and equations of motion give consistent results

V (φ) = −6πµ4 (φ+ C)2 =3

8πH2

Scalar fields

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 12

McVittie is also a solution of a scalar field with a modified kinetic term

minimally coupled to GR

[E. Abdalla, N. Afshordi, M. Fontanini, DCG, E. Papantonopoulos, 1312.3682]

Gravity and Cuscuton field

S =

d4x√−g

[1

2R+ µ2

√X − V (φ)

]

with X = −1

2φ;αφ;α

Field has constant Kαα on homogeneous surfaces

Kαα =

1

µ2

dV

dφ= 3H(t)

Einstein equations and equations of motion give consistent results

V (φ) = −6πµ4 (φ+ C)2 =3

8πH2

Uniform expansion, shear-free solutions are unique to this type of field

Uniqueness of the cuscuton solution

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 13

K-essence action: S =∫d4x

√−g[12R+K(X,ϕ)

]

Uniqueness of the cuscuton solution

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 13

K-essence action: S =∫d4x

√−g[12R+K(X,ϕ)

]

Einstein equations in McVittie

−2XK,X +K = − 3

8πH2

2XK,XX +K,X = 0

Uniqueness of the cuscuton solution

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 13

K-essence action: S =∫d4x

√−g[12R+K(X,ϕ)

]

Einstein equations in McVittie

−2XK,X +K = − 3

8πH2

2XK,XX +K,X = 0

Unique solution: cuscuton

K(X,ϕ) = A(ϕ) +B(ϕ)√X

A(ϕ) =3

8πH2 , B(ϕ) = constant

Dual to Horava-Lifshitz gravity with anisotropic Weyl symmetry

Uniqueness of the cuscuton solution

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 13

K-essence action: S =∫d4x

√−g[12R+K(X,ϕ)

]

Einstein equations in McVittie

−2XK,X +K = − 3

8πH2

2XK,XX +K,X = 0

Unique solution: cuscuton

K(X,ϕ) = A(ϕ) +B(ϕ)√X

A(ϕ) =3

8πH2 , B(ϕ) = constant

Dual to Horava-Lifshitz gravity with anisotropic Weyl symmetry

McVittie is also a vacuum solution of modified gravity

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Imperfect fluid (heat conductivity χ, bulk viscosity ζ , shear viscosity η)

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Imperfect fluid (heat conductivity χ, bulk viscosity ζ , shear viscosity η)

McVittie class is shear-free

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Imperfect fluid (heat conductivity χ, bulk viscosity ζ , shear viscosity η)

McVittie class is shear-free

Bulk viscosity reabsorbed into pressure

T rr = T θ

θ = T φφ = p− 3ζ

(

H +2m

2ar −m

)

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Imperfect fluid (heat conductivity χ, bulk viscosity ζ , shear viscosity η)

McVittie class is shear-free

Bulk viscosity reabsorbed into pressure

T rr = T θ

θ = T φφ = p− 3ζ

(

H +2m

2ar −m

)

Landau-Eckart hydrodynamical model

Fluid temperature has an extra term

T√−gtt = T∞(t) +

m

4πχmln(√

−gtt)

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Imperfect fluid (heat conductivity χ, bulk viscosity ζ , shear viscosity η)

McVittie class is shear-free

Bulk viscosity reabsorbed into pressure

T rr = T θ

θ = T φφ = p− 3ζ

(

H +2m

2ar −m

)

Landau-Eckart hydrodynamical model

Fluid temperature has an extra term

T√−gtt = T∞(t)

︸ ︷︷ ︸

equilibrium

+m

4πχmln(√

−gtt)

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Imperfect fluid (heat conductivity χ, bulk viscosity ζ , shear viscosity η)

McVittie class is shear-free

Bulk viscosity reabsorbed into pressure

T rr = T θ

θ = T φφ = p− 3ζ

(

H +2m

2ar −m

)

Landau-Eckart hydrodynamical model

Fluid temperature has an extra term

T√−gtt = T∞(t) +

m

4πχmln(√

−gtt)

︸ ︷︷ ︸

heat flow

Accretion through heat flow

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 15

An imperfect fluid gives an exact solution to Einstein equations

Accretion through heat flow

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 15

An imperfect fluid gives an exact solution to Einstein equations

Two arbitrary functions: a(t) and m(t).

Accretion through heat flow

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 15

An imperfect fluid gives an exact solution to Einstein equations

Two arbitrary functions: a(t) and m(t). Expansion scalar and fluid density are related via (t, t)

component of field equations

ρ(r, t) =3

[

H +2m

2ar −m

]2

=1

Θ2

3

Accretion through heat flow

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 15

An imperfect fluid gives an exact solution to Einstein equations

Two arbitrary functions: a(t) and m(t). Expansion scalar and fluid density are related via (t, t)

component of field equations

ρ(r, t) =3

[

H +2m

2ar −m

]2

=1

Θ2

3

Energy flow through heat transfer; temperature gradient gives m

T =1√−gtt

[

T∞(t) +m

4πχmln(√

−gtt)]

Null geodesics

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 16

^ r

t

^r+static

^r-static

^r+dyn

^r-dyn

Null geodesics

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 16

^ r

t

^r+s

^r-s

^r+d

^r-d

Null geodesics

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 16

^ r

t

^r+s

^r-s

^r-d

^r = 2 m

Next steps

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 17

Next steps

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 17

Causal structure of the generalized McVittie metric

Apparent horizons

Cauchy horizons on the past singularity

Next steps

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 17

Causal structure of the generalized McVittie metric

Apparent horizons

Cauchy horizons on the past singularity

Thermodynamics: entropy; temperature; first and second laws

Reabsorb heat current into rest frame of the fluid: accretion

Next steps

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 17

Causal structure of the generalized McVittie metric

Apparent horizons

Cauchy horizons on the past singularity

Thermodynamics: entropy; temperature; first and second laws

Reabsorb heat current into rest frame of the fluid: accretion

Other shear-free members of the family of solutions:

Kustaanheimo-Qvist class

Next steps

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 17

Causal structure of the generalized McVittie metric

Apparent horizons

Cauchy horizons on the past singularity

Thermodynamics: entropy; temperature; first and second laws

Reabsorb heat current into rest frame of the fluid: accretion

Other shear-free members of the family of solutions:

Kustaanheimo-Qvist class

Heat flow and anisotropic stress in higher orders of L: Stay tuned

[1404.xxxx]

Next steps

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 17

Causal structure of the generalized McVittie metric

Apparent horizons

Cauchy horizons on the past singularity

Thermodynamics: entropy; temperature; first and second laws

Reabsorb heat current into rest frame of the fluid: accretion

Other shear-free members of the family of solutions:

Kustaanheimo-Qvist class

Heat flow and anisotropic stress in higher orders of L: Stay tuned

[1404.xxxx]

Thank you!

Horndeski action

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 18

Can we have a field as source for generalized McVittie?

Additional terms in the action must look like heat flow

Most general scalar action: Horndeski

First term added to the k-essence action: kinetic gravity braiding

[C. Deffayet, O. Pujolàs, I. Sawicki, A. Vikman, 1008.0048]

Sϕ =

d4x√−g [K(X,ϕ) +G(X,ϕ)ϕ]

with ϕ = gαβϕ;αβ

Up to total derivatives, the Lagrangian may be rewritten as

L = K +Gϕ

= K −G;αϕ;α

= K + 2XG,ϕ −G,Xϕ;αX;α

Full Horndeski action

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 19

S =

d4x√−g

(

1

2R+

3∑

n=0

L(n)

)

where

L(0) =K(X,ϕ)

L(1) =G(X,ϕ)ϕ

L(2) =G(2)(X,ϕ),X

[

(ϕ)2 − ϕ;αβϕ;αβ]

+RG(2)(X,ϕ)

L(3) =G(3)(X,ϕ),X

[

(ϕ)3 − 3ϕϕ;αβϕ;αβ + 2ϕ;αβϕ

;αρϕ β;ρ

]

− 6Gµνϕ;µνG(3)(X,ϕ)

L(2) and L(3) components of Tµν have non-vanishing anisotropic

stress

Energy-momentum tensor

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 20

Energy-momentum tensor of the KGB term

Tµν = (K −G;αϕ;α) gµν + (K,X +ϕG,X)ϕ;µϕ;ν +2G(;µϕ;ν)

Equivalent fluid four-velocity uµ

uµ =ϕ;µ

√2X

Energy-momentum tensor of the equivalent fluid

ρ ≡ 2X (K,X +ϕG,X)−√2Xϕ;αG

p ≡ K −G;αϕ;α

qµ ≡√2XhµαG

Einstein equations

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 21

tr and tt Einstein equations

− m

mϕ= 8πXG,X

−1

3Θ2 = 8π

K − 2X[

G,ϕ +K,X + 3√2XG,XΘ

]

solution of the tr equation

G(X,ϕ) = g0(ϕ) lnX + g1(ϕ)

with

g0(ϕ) = − 1

m

Inserting in the tt equation, taking derivative with respect to r and

using the definition of X

K,X + 2XK,XX + 2[(1 + lnX)g′0 + g′1 + 24πg20

]= 0

Einstein equations

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 22

Solution of tt equation

K = f1(ϕ) + f2(ϕ)√X + 2X

[(2− lnX)g′0 − g′1 − 24πg20

]

Plugging the solution into rr Einstein equation and solving for f1 and

f2

f1 = − 3

8π(H −M)2

f2 =

√2

4πϕ

[

H −M + 3M(

H − M)]

(m

m≡ M and

a

a≡ H

)

Equation of motion

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 23

Consistency check: equation of motion of the scalar

K,ϕ +G,ϕϕ+ [(K,X +G,Xϕ)ϕ;µ +G;µ];µ = 0

Inserting the solutions for G and K

G = g0(ϕ) lnX + g1(ϕ)

K = f1(ϕ) + f2(ϕ)√X + 2X

[(2− lnX)g′

0− g′

1− 24πg2

0

]

where

g0 = − 1

8πϕM

f1 = − 3

8π(H −M)

2

f2 =√2

4πϕ

[

H −M + 3M(

H − M)]

the equation of motion is identically satisfied

Reduces to McVittie/Cuscuton when G = 0 (m = 0)

Action coefficients

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 24

Functions g0, f1 and f2 can be written in terms of ϕ

g0 = − 1

d (lnm)

dϕ⇒ m(ϕ) = e−8π

∫g0dϕ

f2 = − 1√3π

(

8πg0 +f ′1√−f1

)

H =

−8πf13

− 8πg0ϕ

Two functions necessary, plus ϕ(t)

Compare with cuscuton case: K(X,ϕ) = A(ϕ) +B(ϕ)√X

A(ϕ) =3

8πH2 , B(ϕ) = constant

One function necessary, plus ϕ(t)