Crimp Plate Calculator

Post on 17-Jul-2016

27 views 5 download

description

structural

transcript

1 of 32

API RP-2FB Blast Calculations

CLIENT:

PROJECT: 8.3 psi (SLB)

LOCATION:

BY:

DATE:

Strength Level Blast Parameters

Building Geometry

Height H 8.5 ft

Width Perpendicular to Blast B 19.875 ft

Width Parallel to Blast L 8.00 ft

Blast Parameters Magnitude of Blast 0.2615 Bar

FRONT WALL LOADING

Peak Side On Overpressure Pso .29 Bar X 14.5psi/bar = 3.79175 psi

Positive Phase Duration td 0.1315 sec

Shock Front Velocity U U=1130*(1+0.058*Pso)^0.5 1248 ft/sec

(1130*(1+0.058*3.792)^0.5)

Blast Wave Length Lw Lw=U*td 164.12 ft

1,248*0.13

Blast Wave Reflection Coefficient Cr Cr=(2+0.05*Pso) 2.2

Drag Coefficient Cd +1.0 front wall or -0.4 all others 1.0

Peak Reflected Pressure Pr Pr=Cr*Pso 8.30 psi

Dynamic(Blast Wind) Pressure q0 q0=0.022*Pso^2 0.316 psi

0.022*3.792^2

Stagnation Pressure Ps Ps=Pso+Cd*q0 4.11 psi

3.79+1.0*0.316

Clearing Distance S S=(the smaller of H or B/2) 8.50 ft

Clearing Time tc tc=3*S/U<td 0.0204312903 sec

IF(3*8.50/1248.09<=td

Impulse (Area under Pressure-Time Curve) Iw Iw=0.5*(Pr-Ps)*tc+0.5*Ps*td 0.3130 psi-sec.

0.5*(8.30-4.11)*0.02+0.5*4.11*0.13

Duration of Equivalent Triangle(equivalent duration) te te=2*Iw/Pr 0.0753886258 sec

2 of 32

API RP-2FB Blast Calculations

CLIENT:

PROJECT: 8.3 psi (SLB)

LOCATION:

BY:

DATE:

SIDE WALL LOADING

Nominal Unit Width of Element L1 L1=Crimp Spacing 1.20 ft

Ratio for Cc Lw/L1 136.8

164.12/1.20

Reaction due to Mp - Table 6.3 Cc 1.0

Side Wall Drag Coefficient Cds +1.0 front wall or -0.4 all others -0.4

Effective Side-on Overpressure Pas Pa=Cc*Pso+Cdside*q0 3.67 psi

1.0*3.79+-0.4*0.316

Rise Time(Time for Blast to pass over element) trs trs=L1/U 0.001 sec

Elastic Resistance - Table 6.3 1.20/1,248

Duration tds tds=trs+td 0.132 sec

0.001+0.13

ROOF BLAST LOADING

Ratio used to determine Cc Lw/B 164.123/19.88 8.26

Roof Equivalent Load Coefficient Ccr 0.26

Roof Drag Coefficient Cdr -0.4

Effective Roof Side on Pressure Par Par=Ccr*Pso+Cdr*q0 0.86 psi

0.26*3.79+-0.40*0.32

Rise Time trr trr=B/U 0.016

19.88/1,248

Duration tdr tdr=trr+td 0.147 sec

0.016+0.13

REAR WALL BLAST LOADING

Ratio used to determine Cc Lw/H 164.123/8.50 19.31

Roof Equivalent Load Coefficient Ccb 0.48

Roof Drag Coefficient Cdb -0.4

Effective Back Wall Side on Pressure Pab Pab=Ccb*Pso+Cdb*q0 1.69 psi

0.48*3.79+-0.40*0.32

Rise Time trb trb=l/U 0.006

19.88/1,248

Duration tdb tdb=trb+td 0.138 sec

0.006+0.13

3 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT:

PROJECT: 0 16.7 psi (DLB)

LOCATION:

BY:

DATE:

Ductility level Blast Parameters

Building Geometry

Height H 8.5 ft

Width Perpendicular to Blast B 19.875 ft

Width Parallel to Blast L 8.00 ft

Blast Parameters Magnitude of Blast 0.4892 Bar

FRONT WALL LOADING

Peak Side On Overpressure Pso .29 Bar X 14.5psi/bar = 7.0934 psi

Positive Phase Duration td 0.08494 sec

Shock Front Velocity U U=1130*(1+0.058*Pso)^0.5 1342 ft/sec

(1130*(1+0.058*7.093)^0.5)

Blast Wave Length Lw Lw=U*td 114.03 ft

1,342*0.08

Blast Wave Reflection Coefficient Cr Cr=(2+0.05*Pso) 2.4

Drag Coefficient Cd +1.0 front wall or -0.4 all others 1.0

Peak Reflected Pressure Pr Pr=Cr*Pso 16.70 psi

Dynamic(Blast Wind) Pressure q0 q0=0.022*Pso^2 1.107 psi

0.022*7.093^2

Stagnation Pressure Ps Ps=Pso+Cd*q0 8.20 psi

7.09+1.0*1.107

Clearing Distance S S=(the smaller of H or B/2) 8.50 ft

Clearing Time tc tc=3*S/U<td 0.0189947698 sec

IF(3*8.50/1342.47<=td

Impulse (Area under Pressure-Time Curve) Iw Iw=0.5*(Pr-Ps)*tc+0.5*Ps*td 0.4290 psi-sec

0.5*(16.70-8.20)*0.02+0.5*8.20*0.08

Duration of Equivalent Triangle(equivalent duration) te te=2*Iw/Pr 0.0513714085 sec

4 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT:

PROJECT: 0 16.7 psi (DLB)

LOCATION:

BY:

DATE:

Ductility level Blast Parameters

SIDE WALL LOADING

Nominal Unit Width of Element L1 L1=Crimp Spacing 1.20 ft

Ratio for Cc Lw/L1 95.0

114.03/1.20

Reaction due to Mp - Table 6.3 Cc 1.0

Side Wall Drag Coefficient Cds +1.0 front wall or -0.4 all others -0.4

Effective Side-on Overpressure Pas Pa=Cc*Pso+Cdside*q0 6.65 psi

1.0*7.09+-0.4*1.107

Rise Time(Time for Blast to pass over element) trs trs=L1/U 0.001 sec

Elastic Resistance - Table 6.3 1.20/1,342

Duration tds tds=trs+td 0.086 sec

0.001+0.08

ROOF BLAST LOADING

Ratio used to determine Cc Lw/B 114.030/19.88 5.74

Roof Equivalent Load Coefficient Ccr 0.26

Roof Drag Coefficient Cdr -0.4

Effective Roof Side on Pressure Par Par=Ccr*Pso+Cdr*q0 1.40 psi

0.26*7.09+-0.40*1.11

Rise Time trr trr=B/U 0.015

19.88/1,342

Duration tdr tdr=trr+td 0.100 sec

0.015+0.08

REAR WALL BLAST LOADING

Ratio used to determine Cc Lw/H 114.030/8.50 13.42

Roof Equivalent Load Coefficient Ccb 0.48

Roof Drag Coefficient Cdb -0.4

Effective Back Wall Side on Pressure Pab Pab=Ccb*Pso+Cdb*q0 2.96 psi

0.48*7.09+-0.40*1.11

Rise Time trb trb=l/U 0.006

19.88/1,342

Duration tdb tdb=trb+td 0.091 sec

0.006+0.08

5 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 8.3 psi (SLB)

PROJECT:

LOCATION:

BY:

DATE:

Crimp Plate Wall Strength Level Blast

Treat Wall Cladding as a pinned/pinned beam 13" wide

Crimp Maximum Unsupported Length le 90.00 in

Crimp Spacing w 13.00 in

Wall Panel 4x3x13x.375

Crimp Section Moment of Inertia I 8.940

Crimp Section Modulus S 5.200

Crimp Area A 5.810

Crimp Shear Area Av (Area of diagonal section) 1.410

Density d 0.283 lb/in^3

Weight of Steel Panel W 147.981 lb

Mass of Panel M weight/gravity

147.981/386 in/sec^2 0.3834 lbs-sec^2/in

Dead Load DL 0.00 psi

Blast Load Pr 8.30 psi

Duration td 0.1315 sec

Material Yield Strength Fy A-36 36.00 ksi

Material Ultimate Yield Strength Fu A-36 58.00 ksi

Material Modulus of Elasticity E 29000 ksi

Strength Increase Factor SIF From ASCE Table 5.A.1 1.21

Dynamic Increase Factor-Bending (Fdy/Fy) DIFb From ASCE Table 5.A.3 1.29

Dynamic Increase Factor-Shear DIFv From ASCE Table 5.A.3 1.29

Dynamic Increase Factor Ultimate DIFu From ASCE Table 5.A.3 1.10

For Dynamic Bending Fdyb Fdyb=SIF*DIFb*Fy 56.19 ksi

1.21*1.29*36

For Dynamic Shear Fdyv Fdyv=SIF*DIFv*Fy 56.19 ksi

1.21*1.29*36

Ultimate Dynamic Strength Fdu Fdu=SIF*DIFu*Fu 77.20 ksi

1.21*1.10*58.0

Load-Mass Factors Table 6.1 ASCE (Biggs)

elastic, Klm km/kl 0.78

plastic, Klm km/kl 0.66

Average Value Klm 0.72

Equivalent Mass Me Klm*M 0.0003 kips-sec^2/in

or 0.24 psi-ms^2/in

in4

in3

in2

in2

6 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 8.3 psi (SLB)

PROJECT:

LOCATION:

BY:

DATE:

Moment Capacity of Crimp Plate Mp Mp=0.9*S*Fdyb 262.98 kip-in

0.9*5.2000*56.19

Shear Capacity of Crimp Plate Vn Vn=0.55*Av*Fdyv 43.58 kip

0.55*1.4100*56.19

Compute Single Degree of Freedom Properties

Ultimate Resistance - Table 6.1 Ru=Rb Rb=8*Mp/le 23.38 kips

8*262.98/90.00 19.98 psi

Ultimate Shear Vu Ru/2 11.69 kips

23.38/2

Vu<Vn

11.69 < 43.6 PASS

Re Re=8*Mp/le 23.376 kips

8*262.980/90.00

Elastic Stiffness - Table 6.1 Ke Ke=384*E*I/(5*le^3) 27.31 kip/in

384*29,000*8.9400/(5*90.0)^3

First Yield Deflection ye ye=Re/Ke 0.856 in

23.376/27.31

Natural Period - Equation 6.8 tn 2*pi*(Me/Ke)^0.5 0.01998 sec

or 20 ms

td/tn 6.58

*Graphical Solution*

Maximum Allowable Ductility From ASCE Table 5.B.3 6.00

Maximum Allowable Rotation Q From ASCE Table 5.B.3 4.00 deg

Peak Load Fo Fo=Pr+DL 8.30 psi

Ru/Fo 19.98/8.30 2.41

td/tn 6.58

Read from Figure 6.6 ASCE 0.70

0.70 < 6.0 PASS

Maximum Deformation of Member 0.60 in

ATAN(0.599/(0.5*90.00000) 0.76 deg

0.76 < 4.0 PASS

Check that ultimate shear is less than shear capacity

Elastic Resistance - Table 6.1

mmax

md=ym/ye

Check that Ductility Ratio is less than Maximum Allowable

ym md*ye

Check that Support Rotation is less than Maximum Allowable

7 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 16.7 psi (DLB)

PROJECT:

LOCATION:

BY:

DATE:

Crimp Plate Wall Ductility Level Blast

Treat Wall Cladding as a pinned/pinned beam 13" wide

Crimp Maximum Unsupported Length le 90.00 in

Crimp Spacing w 13.00 in

Wall Panel 4x3x13x.375

Crimp Section Moment of Inertia I 8.940

Crimp Section Modulus S 5.200

Crimp Area A 5.810

Crimp Shear Area Av (Area of diagonal section) 1.410

Density d 0.283 lb/in^3

Weight of Steel Panel W 147.981 lb

Mass of Panel M weight/gravity

147.981/386 in/sec^2 0.3834 lbs-sec^2/in

Dead Load DL 0.00 psi

Blast Load Pr 16.70 psi

Duration td #NAME? sec

Material Yield Strength Fy A-36 36.00 ksi

Material Ultimate Yield Strength Fu A-36 58.00 ksi

Material Modulus of Elasticity E 29000 ksi

Strength Increase Factor SIF From ASCE Table 5.A.1 1.21

Dynamic Increase Factor-Bending (Fdy/Fy) DIFb From ASCE Table 5.A.3 1.29

Dynamic Increase Factor-Shear DIFv From ASCE Table 5.A.3 1.29

Dynamic Increase Factor Ultimate DIFu From ASCE Table 5.A.3 1.10

For Dynamic Bending Fdyb Fdyb=SIF*DIFb*Fy 56.19 ksi

1.21*1.29*36

For Dynamic Shear Fdyv Fdyv=SIF*DIFv*Fy 56.19 ksi

1.21*1.29*36

Ultimate Dynamic Strength Fdu Fdu=SIF*DIFu*Fu 77.20 ksi

1.21*1.10*58.0

Load-Mass Factors Table 6.1 ASCE (Biggs)

elastic, Klm km/kl 0.78

plastic, Klm km/kl 0.66

Average Value Klm 0.72

Equivalent Mass Me Klm*M 0.0003 kips-sec^2/in

or 0.24 psi-ms^2/in

in4

in3

in2

in2

8 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 16.7 psi (DLB)

PROJECT:

LOCATION:

BY:

DATE:

Moment Capacity of Crimp Plate Mp Mp=0.9*S*Fdyb 262.98 kip-in

0.9*5.2000*56.19

Shear Capacity of Crimp Plate Vn Vn=0.55*Av*Fdyv 43.58 kip

0.55*1.4100*56.19

Compute Single Degree of Freedom Properties

Ultimate Resistance - Table 6.1 Ru=Rb Rb=8*Mp/le 23.38 kips

8*262.98/90.00 19.98 psi

Ultimate Shear Vu Ru/2 11.69 kips

23.38/2

Vu<Vn

11.69 < 43.6 PASS

Re Re=8*Mp/le 23.376 kips

8*262.980/90.00

Elastic Stiffness - Table 6.1 Ke Ke=384*E*I/(5*le^3) 27.31 kip/in

384*29,000*8.9400/(5*90.0)^3

First Yield Deflection ye ye=Re/Ke 0.856 in

23.376/27.31

Natural Period - Equation 6.8 tn 2*pi*(Me/Ke)^0.5 0.01998 sec

or 20 ms

td/tn #NAME?

*Graphical Solution*

Maximum Allowable Ductility From ASCE Table 5.B.3 6.00

Maximum Allowable Rotation Q From ASCE Table 5.B.3 4.00 deg

Peak Load Fo Fo=Pr+DL 16.70 psi

Ru/Fo 19.98/16.70 1.20

td/tn #NAME?

Read from Figure 6.6 ASCE 2.25

2.25 < 6.0 PASS

Maximum Deformation of Member 1.93 in

ATAN(1.926/(0.5*90.00000) 2.45 deg

2.45 < 4.0 PASS

Check that ultimate shear is less than shear capacity

Elastic Resistance - Table 6.1

mmax

md=ym/ye

Check that Ductility Ratio is less than Maximum Allowable

ym md*ye

Check that Support Rotation is less than Maximum Allowable

9 of 32

CROSS-SECTION PROPERTIES Described by Nodes Coordinates

4" X 3" X 13" X .375" CRIMP PLATE

Units: in

Nodes Coordinates

X Y 0.000 deg X-dim = 13.000 in1 0.000 0.000 A = 5.807 in^2 Y-dim = 3.375 in2 0.000 0.375 Xcg = 6.500 in Sx(top) = 5.394 in^33 1.845 0.375 Ycg = 1.718 in Sx(bot) = 5.205 in^34 4.345 3.375 Ixo = 8.940 in^4 Sy(left) = 12.225 in^35 8.655 3.375 Iyo = 79.464 in^4 Sy(right)= 12.225 in^36 11.155 0.375 Ixyo = 0.000 in^47 13.000 0.3758 13.000 0.000 Section Properties About Principal Axis9 11.000 0.000 0.000 deg Sxp(top) = 5.394 in^3

10 8.500 3.000 Ixp = 8.940 in^4 Sxp(bot) = 5.205 in^311 4.500 3.000 Iyp = 79.464 in^4 Syp(left) = 12.225 in^312 2.000 0.000 Ixyp = 0.000 in^4 Syp(right)= 12.225 in^313 0.000 0.000 J = 88.404 in^41415161718192021222324252627282930313233

Section Properties About Centroidal Axis Parallel to Original Axis =

=

0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000

-6.250

-4.250

-2.250

-0.250

1.750

3.750

5.750

7.750

10 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 8.3 psi (SLB)

PROJECT:

LOCATION:

BY:

DATE:

Wall and Roof Stiffeners

HSS4X2X1/4 @ 12" SPACING (pinned/pinned)

Maximum Unsupported Length le 90.00 in

Spacing w 12.00 in

Wall Panel

Section Moment of Inertia I 5.320

Section Modulus Z 3.380

Area A 2.670

Shear Area Av 2.000

Density d 0.283 lb/in^3

Weight of Stiffener W 68.005 lb

Weight of Plate attached to panel Wplate le*w*.1875*.2836 57.429 lb

Weight of Panel Wpanel 125.434 lb

Mass of Panel M weight/gravity

68.005/386 in/sec^2 0.3250 lbs-sec^2/in

Dead Load DL 0.00 psi

Blast Load Pr 8.30 psi

Duration td 0.1315 sec

Material Yield Strength Fy A-500 Grade C 50.00 ksi

Material Ultimate Yield Strength Fu A-500 Grade C 62.00 ksi

Material Modulus of Elasticity E 29000 ksi

Strength Increase Factor SIF From ASCE Table 5.A.1 1.10

Dynamic Increase Factor-Bending (Fdy/Fy) DIFb From ASCE Table 5.A.3 1.10

Dynamic Increase Factor-Shear DIFv From ASCE Table 5.A.3 1.10

Dynamic Increase Factor Ultimate DIFu From ASCE Table 5.A.3 1.10

For Dynamic Bending Fdyb Fdyb=SIF*DIFb*Fy 60.50 ksi

1.10*1.10*50

For Dynamic Shear Fdyv Fdyv=SIF*DIFv*Fy 60.50 ksi

1.10*1.10*50

Ultimate Dynamic Strength Fdu Fdu=SIF*DIFu*Fu 75.02 ksi

1.10*1.10*62.0

Load-Mass Factors Table 6.1 ASCE (Biggs)

elastic, Klm km/kl 0.78

plastic, Klm km/kl 0.66

Average Value Klm 0.72

Equivalent Mass Me Klm*M 0.0002 kips-sec^2/in

or 0.22 psi-ms^2/in

in4

in3

in2

in2

11 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 8.3 psi (SLB)

PROJECT:

LOCATION:

BY:

DATE:

Moment Capacity Mp Mp=Z*Fdyb 204.49 kip-in

3.3800*60.50

Shear Capacity Vn Vn=0.55*Av*Fdyv 66.55 kip

0.55*2.0000*60.50

Compute Single Degree of Freedom Properties

Ultimate Resistance - Table 6.1 Ru=Rb Rb=8*Mp/le 18.18 kips

8*204.49/90.00 16.83 psi

Ultimate Shear Vu Ru/2 9.09 kips

18.18/2

Vu<Vn

9.09 < 66.6 PASS

Re Re=8*Mp/le 18.177 kips

8*204.490/90.00

Elastic Stiffness - Table 6.1 Ke Ke=384*E*I/(5*le^3) 16.25 kip/in

384*29,000*5.3200/(5*90.0)^3

First Yield Deflection ye ye=Re/Ke 1.118 in

18.177/16.25

Natural Period - Equation 6.8 tn 2*pi*(Me/Ke)^0.5 0.02385 sec

or 24 ms

td/tn 5.51

*Graphical Solution*

Maximum Allowable Ductility From ASCE Table 5.B.3 10.00

Maximum Allowable Rotation Q From ASCE Table 5.B.3 6.00 deg

Peak Load Fo Fo=Pr+DL 8.30 psi

Ru/Fo 16.83/8.30 2.03

td/tn 5.51

Read from Figure 6.6 ASCE 1.00

1.00 < 10.0 PASS

Maximum Deformation of Member 1.12 in

ATAN(1.118/(0.5*90.00000) 1.42 deg

1.42 < 6.0 PASS

Check that ultimate shear is less than shear capacity

Elastic Resistance - Table 6.1

mmax

md=ym/ye

Check that Ductility Ratio is less than Maximum Allowable

ym md*ye

Check that Support Rotation is less than Maximum Allowable

12 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 16.7 psi (DLB)

PROJECT:

LOCATION:

BY:

DATE:

Wall and Roof Stiffeners

HSS4X2X1/4 @ 12" SPACING (pinned/pinned)

Maximum Unsupported Length le 90.00 in

Spacing w 12.00 in

Wall Panel

Section Moment of Inertia I 5.320

Section Modulus Z 3.380

Area A 2.670

Shear Area Av 2.000

Density d 0.283 lb/in^3

Weight of Stiffener W 68.005 lb

Weight of Plate attached to panel Wplate le*w*.1875*.2836 57.429 lb

Weight of Panel Wpanel 125.434 lb

Mass of Panel M weight/gravity

68.005/386 in/sec^2 0.3250 lbs-sec^2/in

Dead Load DL 0.00 psi

Blast Load Pr 16.70 psi

Duration td #NAME? sec

Material Yield Strength Fy A-500 Grade C 50.00 ksi

Material Ultimate Yield Strength Fu A-500 Grade C 62.00 ksi

Material Modulus of Elasticity E 29000 ksi

Strength Increase Factor SIF From ASCE Table 5.A.1 1.10

Dynamic Increase Factor-Bending (Fdy/Fy) DIFb From ASCE Table 5.A.3 1.10

Dynamic Increase Factor-Shear DIFv From ASCE Table 5.A.3 1.10

Dynamic Increase Factor Ultimate DIFu From ASCE Table 5.A.3 1.10

For Dynamic Bending Fdyb Fdyb=SIF*DIFb*Fy 60.50 ksi

1.10*1.10*50

For Dynamic Shear Fdyv Fdyv=SIF*DIFv*Fy 60.50 ksi

1.10*1.10*50

Ultimate Dynamic Strength Fdu Fdu=SIF*DIFu*Fu 75.02 ksi

1.10*1.10*62.0

Load-Mass Factors Table 6.1 ASCE (Biggs)

elastic, Klm km/kl 0.78

plastic, Klm km/kl 0.66

Average Value Klm 0.72

Equivalent Mass Me Klm*M 0.0002 kips-sec^2/in

or 0.22 psi-ms^2/in

in4

in3

in2

in2

13 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 16.7 psi (DLB)

PROJECT:

LOCATION:

BY:

DATE:

Moment Capacity Mp Mp=Z*Fdyb 204.49 kip-in

3.3800*60.50

Shear Capacity Vn Vn=0.55*Av*Fdyv 66.55 kip

0.55*2.0000*60.50

Compute Single Degree of Freedom Properties

Ultimate Resistance - Table 6.1 Ru=Rb Rb=8*Mp/le 18.18 kips

8*204.49/90.00 16.83 psi

Ultimate Shear Vu Ru/2 9.09 kips

18.18/2

Vu<Vn

9.09 < 66.6 PASS

Re Re=8*Mp/le 18.177 kips

8*204.490/90.00

Elastic Stiffness - Table 6.1 Ke Ke=384*E*I/(5*le^3) 16.25 kip/in

384*29,000*5.3200/(5*90.0)^3

First Yield Deflection ye ye=Re/Ke 1.118 in

18.177/16.25

Natural Period - Equation 6.8 tn 2*pi*(Me/Ke)^0.5 0.02385 sec

or 24 ms

td/tn #NAME?

*Graphical Solution*

Maximum Allowable Ductility From ASCE Table 5.B.3 10.00

Maximum Allowable Rotation Q From ASCE Table 5.B.3 6.00 deg

Peak Load Fo Fo=Pr+DL 16.70 psi

Ru/Fo 16.83/16.70 1.01

td/tn #NAME?

Read from Figure 6.6 ASCE 4.00

4.00 < 10.0 PASS

Maximum Deformation of Member 4.47 in

ATAN(4.473/(0.5*90.00000) 5.68 deg

5.68 < 6.0 PASS

Check that ultimate shear is less than shear capacity

Elastic Resistance - Table 6.1

mmax

md=ym/ye

Check that Ductility Ratio is less than Maximum Allowable

ym md*ye

Check that Support Rotation is less than Maximum Allowable

14 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 8.3 psi (SLB)

PROJECT:

LOCATION:

BY:

DATE:

3/16" Plate (fixed/pinned)

Treat plate as 12" long by 1" wide beam

Maximum Unsupported Length le 12.00 in

Spacing w 1.00 in

Wall Panel

Section Moment of Inertia I 0.001

Section Modulus S 0.006

Area A 0.188

Shear Area Av 0.188

Density d 0.283 lb/in^3

Weight of Steel Panel W 0.637 lb

Mass of Panel M weight/gravity

0.637/386 in/sec^2 0.0016 lbs-sec^2/in

Dead Load DL 0.00 psi

Blast Load Pr 8.30 psi

Duration td 0.1315 sec

Material Yield Strength Fy A-36 36.00 ksi

Material Ultimate Yield Strength Fu A-36 58.00 ksi

Material Modulus of Elasticity E 29000 ksi

Strength Increase Factor SIF From ASCE Table 5.A.1 1.10

Dynamic Increase Factor-Bending (Fdy/Fy) DIFb From ASCE Table 5.A.3 1.29

Dynamic Increase Factor-Shear DIFv From ASCE Table 5.A.3 1.29

Dynamic Increase Factor Ultimate DIFu From ASCE Table 5.A.3 1.10

For Dynamic Bending Fdyb Fdyb=SIF*DIFb*Fy 51.08 ksi

1.10*1.29*36

For Dynamic Shear Fdyv Fdyv=SIF*DIFv*Fy 51.08 ksi

1.10*1.29*36

Ultimate Dynamic Strength Fdu Fdu=SIF*DIFu*Fu 70.18 ksi

1.10*1.10*58.0

Load-Mass Factors Table 6.2 ASCE (Biggs)

elastic, Klm km/kl 0.78

elasto-plastic, Klm km/kl 0.78

plastic, Klm km/kl 0.66

Average Value Klm 0.74

Equivalent Mass Me Klm*M 0.0000 kips-sec^2/in

or 0.10 psi-ms^2/in

in4

in3

in2

in2

15 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 8.3 psi (SLB)

PROJECT:

LOCATION:

BY:

DATE:

Moment Capacity Mp Mp=S*Fdyb 0.30 kip-in

0.0059*51.08

Shear Capacity Vn Vn=0.55*Av*Fdyv 5.27 kip

0.55*0.1875*51.08

Compute Single Degree of Freedom Properties

Ultimate Resistance - Table 6.2 Ru=Rb Rb=12*Mp/le 0.30 kips

12*0.30/12.00 24.94 psi

Re Re=8*Mp/le 0.200 kips

8*0.299/12.00

Elastic Stiffness - Table 6.2 Ke Ke=185*E*I/(le^3) 1.71 kip/in

185*29,000*0.0005/(12.0)^3

First Yield Deflection ye ye=Re/Ke 0.117 in

0.200/1.71

ElastoPlastic Stiffness (after first Yield) Kep Kep=384*E*I/(5*le^3) 0.71 kip/in

Final Yield Deflection yep yep=(Ru-Re)/Kep+ye 0.26 in

Effective Bi-linear Elastic Stiffness Kbe Kbe=307*E*I/le^3 2.83 kip/in

Effective Elastic Deflection yee yee=Ru/Kbe 0.11 in

Natural Period - Equation 6.8 tn 2*pi*(Me/Ke)^0.5 0.00531 sec

or 5 ms

td/tn 24.75

*Graphical Solution*

Maximum Allowable Ductility From ASCE Table 5.B.3 10.00

Maximum Allowable Rotation Q From ASCE Table 5.B.3 6.00 deg

Peak Load Fo Fo=Pr+DL 8.30 psi

Ru/Fo 24.94/8.30 3.00

td/tn 24.75

Read from Figure 6.6 ASCE 0.80

0.70 PASS

Maximum Deformation of Member 0.09 in

ATAN(0.094/(0.5*12.00000) 0.89 deg

0.89 < 6.0 PASS

Elastic Resistance - Table 6.2

mmax

md=ym/ye

Check that Ductility Ratio is less than Maximum Allowable

ym md*ye

Check that Support Rotation is less than Maximum Allowable

16 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 16.7 psi (DLB)

PROJECT:

LOCATION:

BY:

DATE:

3/16" Plate (fixed/pinned)

Treat plate as 12" long by 1" wide beam

Maximum Unsupported Length le 12.00 in

Spacing w 1.00 in

Wall Panel

Section Moment of Inertia I 0.001

Section Modulus S 0.006

Area A 0.188

Shear Area Av 0.188

Density d 0.283 lb/in^3

Weight of Steel Panel W 0.637 lb

Mass of Panel M weight/gravity

0.637/386 in/sec^2 0.0016 lbs-sec^2/in

Dead Load DL 0.00 psi

Blast Load Pr 16.70 psi

Duration td #NAME? sec

Material Yield Strength Fy A-36 36.00 ksi

Material Ultimate Yield Strength Fu A-36 58.00 ksi

Material Modulus of Elasticity E 29000 ksi

Strength Increase Factor SIF From ASCE Table 5.A.1 1.10

Dynamic Increase Factor-Bending (Fdy/Fy) DIFb From ASCE Table 5.A.3 1.29

Dynamic Increase Factor-Shear DIFv From ASCE Table 5.A.3 1.29

Dynamic Increase Factor Ultimate DIFu From ASCE Table 5.A.3 1.10

For Dynamic Bending Fdyb Fdyb=SIF*DIFb*Fy 51.08 ksi

1.10*1.29*36

For Dynamic Shear Fdyv Fdyv=SIF*DIFv*Fy 51.08 ksi

1.10*1.29*36

Ultimate Dynamic Strength Fdu Fdu=SIF*DIFu*Fu 70.18 ksi

1.10*1.10*58.0

Load-Mass Factors Table 6.2 ASCE (Biggs)

elastic, Klm km/kl 0.78

elasto-plastic, Klm km/kl 0.78

plastic, Klm km/kl 0.66

Average Value Klm 0.74

Equivalent Mass Me Klm*M 0.0000 kips-sec^2/in

or 0.10 psi-ms^2/in

in4

in3

in2

in2

17 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 16.7 psi (DLB)

PROJECT:

LOCATION:

BY:

DATE:

Moment Capacity Mp Mp=S*Fdyb 0.30 kip-in

0.0059*51.08

Shear Capacity Vn Vn=0.55*Av*Fdyv 5.27 kip

0.55*0.1875*51.08

Compute Single Degree of Freedom Properties

Ultimate Resistance - Table 6.2 Ru=Rb Rb=12*Mp/le 0.30 kips

12*0.30/12.00 24.94 psi

Re Re=8*Mp/le 0.200 kips

8*0.299/12.00

Elastic Stiffness - Table 6.2 Ke Ke=185*E*I/(le^3) 1.71 kip/in

185*29,000*0.0005/(12.0)^3

First Yield Deflection ye ye=Re/Ke 0.117 in

0.200/1.71

ElastoPlastic Stiffness (after first Yield) Kep Kep=384*E*I/(5*le^3) 0.71 kip/in

Final Yield Deflection yep yep=(Ru-Re)/Kep+ye 0.26 in

Effective Bi-linear Elastic Stiffness Kbe Kbe=307*E*I/le^3 2.83 kip/in

Effective Elastic Deflection yee yee=Ru/Kbe 0.11 in

Natural Period - Equation 6.8 tn 2*pi*(Me/Ke)^0.5 0.00531 sec

or 5 ms

td/tn #NAME?

*Graphical Solution*

Maximum Allowable Ductility From ASCE Table 5.B.3 10.00

Maximum Allowable Rotation Q From ASCE Table 5.B.3 6.00 deg

Peak Load Fo Fo=Pr+DL 16.70 psi

Ru/Fo 24.94/16.70 1.49

td/tn #NAME?

Read from Figure 6.6 ASCE 1.50

1.50 < 10.0 PASS

Maximum Deformation of Member 0.18 in

ATAN(0.176/(0.5*12.00000) 1.68 deg

1.68 < 6.0 PASS

Elastic Resistance - Table 6.2

mmax

md=ym/ye

Check that Ductility Ratio is less than Maximum Allowable

ym md*ye

Check that Support Rotation is less than Maximum Allowable

18 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 16.7 psi (SLB)

PROJECT:

LOCATION:

BY:

DATE:

Wall Opening Framing

HSS4X4X3/8 (pinned/pinned)

Maximum Unsupported Length le 90.00 in

Spacing w Tributary width 22.00 in

Wall Panel

Section Moment of Inertia I 10.300

Section Modulus Z 6.390

Area A 4.780

Shear Area Av 3.000

Density d 0.283 lb/in^3

Weight of Stiffener W 121.747 lb

Additional Weight 200.000 lb

Weight of Panel Wpanel 321.747 lb

Mass of Panel M weight/gravity

121.747/386 in/sec^2 0.8335 lbs-sec^2/in

Dead Load DL 0.00 psi

Blast Load Pr 8.30 psi

Duration td 0.1315 sec

Material Yield Strength Fy A-500 Grade C 50.00 ksi

Material Ultimate Yield Strength Fu A-500 Grade C 62.00 ksi

Material Modulus of Elasticity E 29000 ksi

Strength Increase Factor SIF From ASCE Table 5.A.1 1.10

Dynamic Increase Factor-Bending (Fdy/Fy) DIFb From ASCE Table 5.A.3 1.10

Dynamic Increase Factor-Shear DIFv From ASCE Table 5.A.3 1.10

Dynamic Increase Factor Ultimate DIFu From ASCE Table 5.A.3 1.10

For Dynamic Bending Fdyb Fdyb=SIF*DIFb*Fy 60.50 ksi

1.10*1.10*50

For Dynamic Shear Fdyv Fdyv=SIF*DIFv*Fy 60.50 ksi

1.10*1.10*50

Ultimate Dynamic Strength Fdu Fdu=SIF*DIFu*Fu 75.02 ksi

1.10*1.10*62.0

Load-Mass Factors Table 6.1 ASCE (Biggs)

elastic, Klm km/kl 0.78

plastic, Klm km/kl 0.66

Average Value Klm 0.72

Equivalent Mass Me Klm*M 0.0006 kips-sec^2/in

or 0.30 psi-ms^2/in

in4

in3

in2

in2

Wadd.

19 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 16.7 psi (SLB)

PROJECT:

LOCATION:

BY:

DATE:

Moment Capacity Mp Mp=Z*Fdyb 386.60 kip-in

6.3900*60.50

Shear Capacity Vn Vn=0.55*Av*Fdyv 99.83 kip

0.55*3.0000*60.50

Compute Single Degree of Freedom Properties

Ultimate Resistance - Table 6.1 Ru=Rb Rb=8*Mp/le 34.36 kips

8*386.60/90.00 17.36 psi

Ultimate Shear Vu Ru/2 17.18 kips

34.36/2

Vu<Vn

17.18 < 99.8 PASS

Re Re=8*Mp/le 34.364 kips

8*386.595/90.00

Elastic Stiffness - Table 6.1 Ke Ke=384*E*I/(5*le^3) 31.47 kip/in

384*29,000*10.3000/(5*90.0)^3

First Yield Deflection ye ye=Re/Ke 1.092 in

34.364/31.47

Natural Period - Equation 6.8 tn 2*pi*(Me/Ke)^0.5 0.02745 sec

or 27 ms

td/tn 4.79

*Graphical Solution*

Maximum Allowable Ductility From ASCE Table 5.B.3 10.00

Maximum Allowable Rotation Q From ASCE Table 5.B.3 6.00 deg

Peak Load Fo Fo=Pr+DL 8.30 psi

Ru/Fo 17.36/8.30 2.09

td/tn 4.79

Read from Figure 6.6 ASCE 0.90

0.90 < 10.0 PASS

Maximum Deformation of Member 0.98 in

ATAN(0.983/(0.5*90.00000) 1.25 deg

1.25 < 6.0 PASS

Check that ultimate shear is less than shear capacity

Elastic Resistance - Table 6.1

mmax

md=ym/ye

Check that Ductility Ratio is less than Maximum Allowable

ym md*ye

Check that Support Rotation is less than Maximum Allowable

20 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 16.7 psi (DLB)

PROJECT:

LOCATION:

BY:

DATE:

Wall Opening Framing

HSS4X4X3/8 (pinned/pinned)

Maximum Unsupported Length le 90.00 in

Spacing w Tributary width 22.00 in

Wall Panel

Section Moment of Inertia I 10.300

Section Modulus Z 6.390

Area A 4.780

Shear Area Av 3.000

Density d 0.283 lb/in^3

Weight of Stiffener W 121.747 lb

Additional Weight 200.000 lb

Weight of Panel Wpanel 321.747 lb

Mass of Panel M weight/gravity

121.747/386 in/sec^2 0.8335 lbs-sec^2/in

Dead Load DL 0.00 psi

Blast Load Pr 16.70 psi

Duration td #NAME? sec

Material Yield Strength Fy A-500 Grade C 50.00 ksi

Material Ultimate Yield Strength Fu A-500 Grade C 62.00 ksi

Material Modulus of Elasticity E 29000 ksi

Strength Increase Factor SIF From ASCE Table 5.A.1 1.10

Dynamic Increase Factor-Bending (Fdy/Fy) DIFb From ASCE Table 5.A.3 1.10

Dynamic Increase Factor-Shear DIFv From ASCE Table 5.A.3 1.10

Dynamic Increase Factor Ultimate DIFu From ASCE Table 5.A.3 1.10

For Dynamic Bending Fdyb Fdyb=SIF*DIFb*Fy 60.50 ksi

1.10*1.10*50

For Dynamic Shear Fdyv Fdyv=SIF*DIFv*Fy 60.50 ksi

1.10*1.10*50

Ultimate Dynamic Strength Fdu Fdu=SIF*DIFu*Fu 75.02 ksi

1.10*1.10*62.0

Load-Mass Factors Table 6.1 ASCE (Biggs)

elastic, Klm km/kl 0.78

plastic, Klm km/kl 0.66

Average Value Klm 0.72

Equivalent Mass Me Klm*M 0.0006 kips-sec^2/in

or 0.30 psi-ms^2/in

in4

in3

in2

in2

Wadd.

21 of 32

API RP-2FB Blast Calculations

Using ASCE "Design of Blast Resistant Buildings in Petrochemical Facilities"

CLIENT: 16.7 psi (DLB)

PROJECT:

LOCATION:

BY:

DATE:

Moment Capacity Mp Mp=Z*Fdyb 386.60 kip-in

6.3900*60.50

Shear Capacity Vn Vn=0.55*Av*Fdyv 99.83 kip

0.55*3.0000*60.50

Compute Single Degree of Freedom Properties

Ultimate Resistance - Table 6.1 Ru=Rb Rb=8*Mp/le 34.36 kips

8*386.60/90.00 17.36 psi

Ultimate Shear Vu Ru/2 17.18 kips

34.36/2

Vu<Vn

17.18 < 99.8 PASS

Re Re=8*Mp/le 34.364 kips

8*386.595/90.00

Elastic Stiffness - Table 6.1 Ke Ke=384*E*I/(5*le^3) 31.47 kip/in

384*29,000*10.3000/(5*90.0)^3

First Yield Deflection ye ye=Re/Ke 1.092 in

34.364/31.47

Natural Period - Equation 6.8 tn 2*pi*(Me/Ke)^0.5 0.02745 sec

or 27 ms

td/tn #NAME?

*Graphical Solution*

Maximum Allowable Ductility From ASCE Table 5.B.3 10.00

Maximum Allowable Rotation Q From ASCE Table 5.B.3 6.00 deg

Peak Load Fo Fo=Pr+DL 16.70 psi

Ru/Fo 17.36/16.70 1.04

td/tn #NAME?

Read from Figure 6.6 ASCE 3.50

3.50 < 10.0 PASS

Maximum Deformation of Member 3.82 in

ATAN(3.822/(0.5*90.00000) 4.85 deg

4.85 < 6.0 PASS

Check that ultimate shear is less than shear capacity

Elastic Resistance - Table 6.1

mmax

md=ym/ye

Check that Ductility Ratio is less than Maximum Allowable

ym md*ye

Check that Support Rotation is less than Maximum Allowable

Crimp 5x2x14x.1875 5x2x14x.25 4x3x14x.1875 3x14x.25 6x1x14x.25I 2.239 2.990 4.580 6.120 0.619S 2.028 2.630 2.848 3.720 1.036Av 2.936 3.900 3.091 4.120 2.835

HSS4"X4"X3/16" HSS6"X6"X1/4" C4X5.4 HSS4"X4"X.25" HSS4"X4"X.3125"width 4 6 1.58 4 4I 6.210 28.6 3.85 7.8 9.14S 3.100 9.54 1.92 3.9 4.57Av 2.580 5.24 1.58 3.37 4.1weight lb/ft 9.400 18.99 5.4 12.18 14.78

W8X21 HSS 3"X2"X3/16" HSS4"X2"X3/16" HSS4"X4"x.375"width of flange 5.27 2 2 4I 75.3 1.77 3.66 10.3S 18.2 1.18 1.83 5.13Av 6.16 1.54 1.89 4.78weight lb/ft 21 5.59 6.87 17.2

HSS4"X4"X.3125"

27 of 32

CROSS-SECTION PROPERTIES Described by Nodes Coordinates

3/8" X 2" X 14" CRIMP PLATE

Units: in

Nodes Coordinates

X Y 0.000 deg X-dim = 14.000 in1 0.000 0.000 A = 5.650 in^2 Y-dim = 2.375 in2 0.000 0.375 Xcg = 7.000 in Sx(top) = 3.713 in^33 2.500 0.375 Ycg = 1.174 in Sx(bot) = 3.796 in^34 4.500 2.375 Ixo = 4.458 in^4 Sy(left) = 12.949 in^35 9.500 2.375 Iyo = 90.645 in^4 Sy(right)= 12.949 in^36 11.500 0.375 Ixyo = 0.000 in^47 14.000 0.3758 14.000 0.000 Section Properties About Principal Axis9 11.400 0.000 0.000 deg Sxp(top) = 3.713 in^3

10 9.400 2.000 Ixp = 4.458 in^4 Sxp(bot) = 3.796 in^311 4.600 2.000 Iyp = 90.645 in^4 Syp(left) = 12.949 in^312 2.600 0.000 Ixyp = 0.000 in^4 Syp(right)= 12.949 in^313 0.000 0.000 J = 95.103 in^41415161718192021222324252627282930313233

Section Properties About Centroidal Axis Parallel to Original Axis =

=

0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000

-6.250

-4.250

-2.250

-0.250

1.750

3.750

5.750

7.750

28 of 32

CROSS-SECTION PROPERTIES Described by Nodes Coordinates

5" X 2" X 14" X .1875" CRIMP PLATE

Units: in

Nodes Coordinates

X Y 0.000 deg X-dim = 14.000 in1 0.000 0.000 A = 2.936 in^2 Y-dim = 2.188 in2 0.000 0.188 Xcg = 7.000 in Sx(top) = 2.066 in^33 2.422 0.188 Ycg = 1.104 in Sx(bot) = 2.028 in^34 4.422 2.188 Ixo = 2.239 in^4 Sy(left) = 6.696 in^35 9.578 2.188 Iyo = 46.871 in^4 Sy(right)= 6.696 in^36 11.578 0.188 Ixyo = 0.000 in^47 14.000 0.1888 14.000 0.000 Section Properties About Principal Axis9 11.500 0.000 0.000 deg Sxp(top) = 2.066 in^3

10 9.500 2.000 Ixp = 2.239 in^4 Sxp(bot) = 2.028 in^311 4.500 2.000 Iyp = 46.871 in^4 Syp(left) = 6.696 in^312 2.500 0.000 Ixyp = 0.000 in^4 Syp(right)= 6.696 in^313 0.000 0.000 J = 49.110 in^41415161718192021222324252627282930313233

Section Properties About Centroidal Axis Parallel to Original Axis =

=

0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000

-6.250

-4.250

-2.250

-0.250

1.750

3.750

5.750

7.750

29 of 32

CROSS-SECTION PROPERTIES Described by Nodes Coordinates

6" X 1" X 14" X .1875" CRIMP PLATE

Units: in

Nodes Coordinates

X Y -0.024 deg X-dim = 14.000 in1 0.000 0.000 A = 2.835 in^2 Y-dim = 1.188 in2 0.000 0.188 Xcg = 7.073 in Sx(top) = 1.049 in^33 2.922 0.188 Ycg = 0.597 in Sx(bot) = 1.036 in^34 3.922 1.188 Ixo = 0.619 in^4 Sy(left) = 6.448 in^35 10.078 1.188 Iyo = 45.607 in^4 Sy(right)= 6.584 in^36 11.188 0.188 Ixyo = -0.019 in^47 14.000 0.1888 14.000 0.000 Section Properties About Principal Axis9 11.000 0.000 -0.024 deg Sxp(top) = 1.047 in^3

10 10.000 1.000 Ixp = 0.619 in^4 Sxp(bot) = 1.031 in^311 4.000 1.000 Iyp = 45.607 in^4 Syp(left) = 6.448 in^312 3.000 0.000 Ixyp = 0.000 in^4 Syp(right)= 6.584 in^313 0.000 0.000 J = 46.226 in^41415161718192021222324252627282930313233

Section Properties About Centroidal Axis Parallel to Original Axis =

=

0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000

-6.250

-4.250

-2.250

-0.250

1.750

3.750

5.750

7.750

30 of 32

CROSS-SECTION PROPERTIES Described by Nodes Coordinates

4" X 3" X 14" X .1875" CRIMP PLATE

Units: in

Nodes Coordinates

X Y 0.000 deg X-dim = 14.000 in1 0.000 0.000 A = 3.091 in^2 Y-dim = 3.188 in2 0.000 0.188 Xcg = 7.000 in Sx(top) = 2.899 in^33 1.922 0.188 Ycg = 1.608 in Sx(bot) = 2.848 in^34 4.922 3.188 Ixo = 4.580 in^4 Sy(left) = 7.009 in^35 9.078 3.188 Iyo = 49.063 in^4 Sy(right)= 7.009 in^36 12.078 0.188 Ixyo = 0.000 in^47 14.000 0.1888 14.000 0.000 Section Properties About Principal Axis9 12.000 0.000 0.000 deg Sxp(top) = 2.899 in^3

10 9.000 3.000 Ixp = 4.580 in^4 Sxp(bot) = 2.848 in^311 5.000 3.000 Iyp = 49.063 in^4 Syp(left) = 7.009 in^312 2.000 0.000 Ixyp = 0.000 in^4 Syp(right)= 7.009 in^313 0.000 0.000 J = 53.643 in^41415161718192021222324252627282930313233

Section Properties About Centroidal Axis Parallel to Original Axis =

=

0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000

-6.250

-4.250

-2.250

-0.250

1.750

3.750

5.750

7.750

31 of 32

CROSS-SECTION PROPERTIES Described by Nodes Coordinates

3" X 4" X 18" X .1875" CRIMP PLATE

Units: in

Nodes Coordinates

X Y 0.000 deg X-dim = 18.000 in1 0.000 0.000 A = 3.987 in^2 Y-dim = 4.125 in2 0.000 0.188 Xcg = 9.000 in Sx(top) = 3.898 in^33 3.672 0.188 Ycg = 1.660 in Sx(bot) = 5.787 in^34 7.422 4.125 Ixo = 9.608 in^4 Sy(left) = 10.997 in^35 10.578 4.125 Iyo = 98.974 in^4 Sy(right)= 10.997 in^36 14.328 0.188 Ixyo = 0.000 in^47 18.000 0.1888 18.000 0.000 Section Properties About Principal Axis9 14.250 0.000 0.000 deg Sxp(top) = 3.898 in^3

10 10.500 3.938 Ixp = 9.608 in^4 Sxp(bot) = 5.787 in^311 7.500 3.938 Iyp = 98.974 in^4 Syp(left) = 10.997 in^312 3.750 0.000 Ixyp = 0.000 in^4 Syp(right)= 10.997 in^313 0.000 0.000 J = 108.582 in^41415161718192021222324252627282930313233

Section Properties About Centroidal Axis Parallel to Original Axis =

=

0.000 5.000 10.000 15.000 20.000

-6.250

-4.250

-2.250

-0.250

1.750

3.750

5.750

7.750

32 of 32

CROSS-SECTION PROPERTIES Described by Nodes Coordinates

3" X 3.3125" X 13" X .25" CRIMP PLATE

Units: in

Nodes Coordinates

X Y 0.000 deg X-dim = 13.000 in1 0.000 0.000 A = 3.936 in^2 Y-dim = 3.563 in2 0.000 0.250 Xcg = 6.500 in Sx(top) = 3.619 in^33 1.396 0.250 Ycg = 1.803 in Sx(bot) = 3.532 in^34 4.896 3.563 Ixo = 6.368 in^4 Sy(left) = 8.301 in^35 8.104 3.563 Iyo = 53.955 in^4 Sy(right)= 8.301 in^36 11.604 0.250 Ixyo = 0.000 in^47 13.000 0.2508 13.000 0.000 Section Properties About Principal Axis9 11.500 0.000 0.000 deg Sxp(top) = 3.619 in^3

10 8.000 3.313 Ixp = 6.368 in^4 Sxp(bot) = 3.532 in^311 5.000 3.313 Iyp = 53.955 in^4 Syp(left) = 8.301 in^312 1.500 0.000 Ixyp = 0.000 in^4 Syp(right)= 8.301 in^313 0.000 0.000 J = 60.323 in^41415161718192021222324252627282930313233

Section Properties About Centroidal Axis Parallel to Original Axis =

=

0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000

-6.250

-4.250

-2.250

-0.250

1.750

3.750

5.750

7.750