DCM for evoked responses - FIL | UCL · Auksztulewicz & Friston, 2015 Example #4: Factorial design...

Post on 04-Aug-2020

0 views 0 download

transcript

DCM for evoked responses

Ryszard Auksztulewicz

SPM for M/EEG course, 2019

Does network XYZ explain my data better than network XY?

Which XYZ connectivity structure best explains my data?

Are X & Y linked in a bottom-up, top-down or recurrent fashion?

Is my effect driven by extrinsic or intrinsic connections?

Which neural populations are affected by contextual factors?

Which connections determine observed frequency coupling?

How changing a connection/parameter would influence data?

input

context

Collect data

Build model(s)

Fit your model

parameters to

the data

Pick the best

model

Make an

inference

(conclusion)

The DCM analysis pathway

Collect data

Build model(s)

Fit your model

parameters to

the data

Pick the best

model

Make an

inference

(conclusion)

The DCM analysis pathway

Data for DCM for ERPs / ERFs

1. Downsample

2. Filter (e.g. 1-40Hz)

3. Epoch

4. Remove artefacts

5. Average

Per subject

Grand average

6. Plausible sources

Literature / a priori

Dipole fitting

Source reconstruction

Collect data

Build model(s)

Fit your model

parameters to

the data

Pick the best

model

Make an

inference

(conclusion)

The DCM analysis pathway

Collect data

Build model(s)

Fit your model

parameters to

the data

Pick the best

model

Make an

inference

(conclusion)

The DCM analysis pathway

‘Hardwired’

model features

Models

Kiebel et al., 2008

Neuronal (source) model

spm_fx_erp

Inhib

Inter

Spiny

Stell

Pyr

L2/3

L4

L5/6

NEURAL MASS MODEL

Canonical Microcircuit Model (‘CMC’)

Bastos et al. (2012) Pinotsis et al. (2012)

Original

microcircuit

Updated

microcircuit

Canonical microcircuit

(predictive coding)Reduced model

(DCM)

mv

xv

spm_fx_cmcspm_fx_erp

Inhib

Inter

Spiny

Stell

Pyr

L2/3

L4

L5/6

NEURAL MASS MODEL CANONICAL MICROCIRCUIT

Pyr

Spiny

Stell

Inhib

Inter

Pyr

Canonical Microcircuit Model (‘CMC’)

Supra-

granular

Layer

Infra-

granular

Layer

Granular

Layer

Granular

Layer

Supra-

granular

Layer

Infra-

granular

Layer

Pinotsis et al., 2012

Canonical Microcircuit Model (‘CMC’)

Superficial Pyramidal

Cells

Spiny Stellate Cells

Deep Pyramidal

Cells

Inhibitory Interneurons

Granular

Layer

Supra-

granular

Layer

Infra-

granular

Layer

Pinotsis et al., 2012

Canonical Microcircuit Model (‘CMC’)

Superficial Pyramidal

Cells

Spiny Stellate Cells

Deep Pyramidal

Cells

Inhibitory Interneurons

Granular

Layer

Supra-

granular

Layer

Infra-

granular

Layer

3

2

5

6

89

Pinotsis et al., 2012

Canonical Microcircuit Model (‘CMC’)

Superficial Pyramidal

Cells

Spiny Stellate Cells

Deep Pyramidal

Cells

Inhibitory Interneurons

Canonical Microcircuit Model (‘CMC’)

Granular

Layer

Supra-

granular

Layer

Infra-

granular

Layer

4

1

10

7

6

9

Pinotsis et al., 2012

3

2

5

8

Superficial Pyramidal

Cells

Spiny Stellate Cells

Deep Pyramidal

Cells

Inhibitory Interneurons

Canonical Microcircuit Model (‘CMC’)

Granular

Layer

Supra-

granular

Layer

Infra-

granular

Layer

4

1

)( 3pSAF

10

7

6

9

)( 7pSAB

Pinotsis et al., 2012

3

2

5

8

Superficial Pyramidal

Cells

Spiny Stellate Cells

Deep Pyramidal

Cells

Inhibitory Interneurons

Canonical Microcircuit Model (‘CMC’)

Granular

Layer

Supra-

granular

Layer

Infra-

granular

Layer

4

1

)( 3pSAF

10

7

6

9

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 3pSAF

)( 7pSAB

Pinotsis et al., 2012

3

2

5

8

Superficial Pyramidal

Cells

Spiny Stellate Cells

Deep Pyramidal

Cells

Inhibitory Interneurons

Canonical Microcircuit Model (‘CMC’)

Granular

Layer

Supra-

granular

Layer

Infra-

granular

Layer

4

1

)( 3pSAF

10

7

6

9

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 3pSAF

)( 7pSAB

U

Pinotsis et al., 2012

3

2

5

8

Superficial Pyramidal

Cells

Spiny Stellate Cells

Deep Pyramidal

Cells

Inhibitory Interneurons

Canonical Microcircuit Model (‘CMC’)

Granular

Layer

Supra-

granular

Layer

Infra-

granular

Layer

4

1

)( 3pSAF

10

7

6

9

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 7pS

U

Pinotsis et al., 2012

3

2

5

8

Superficial Pyramidal

Cells

Spiny Stellate Cells

Deep Pyramidal

Cells

Inhibitory Interneurons

2

4

7

4

8597102

4

48

87

2))()()((

pppSpSpSA

Hp

pp

F −−−−=

=

Voltage change rate: f(current)

Current change rate: f(voltage,current)

Pinotsis et al., 2012

Canonical Microcircuit Model (‘CMC’)

2

4

7

4

8597102

4

48

87

2))()()((

pppSpSpSA

Hp

pp

F −−−−=

=

David et al., 2006; Pinotsis et al., 2012

Voltage change rate: f(current)

Current change rate: f(voltage,current)

H, τ Kernels: pre-synaptic inputs -> post-synaptic membrane potentials

[ H: max PSP; τ: rate constant ]

S Sigmoid operator: PSP -> firing rate

Canonical Microcircuit Model (‘CMC’)

2

2

3

2

437187

2

24

43

2))()()(((

pppSpSpSA

Hp

pp

B −−−+−=

=

Canonical Microcircuit Model (‘CMC’)

Granular

Layer

Supra-

granular

Layer

Infra-

granular

Layer

4

1

)( 3pSAF

2

4

7

4

8597102

4

48

87

2))()()((

pppSpSpSA

Hp

pp

F −−−−=

=

2

3

5

3

65476157

3

36

65

2))()()()((

pppSpSpSpSA

Hp

pp

B −−−+−−=

=

2

1

1

1

23253113

1

12

21

2))()()()(((

ppCupSpSpSpSA

Hp

pp

F −−−−−=

=

10

7

6

9

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 7pS

U

3Lp y =

Pinotsis et al., 2012

3

2

5

8

Van Wijk et al., 2018

Collect data

Fit your model

parameters to

the data

Pick the best

model

Make an

inference

(conclusion)

The DCM analysis pathway

‘Hardwired’

model features

Build model(s)

2 1

4 3

5

2 1

4 3

5

Input

2 1

4 3

5

Input

2 1

4 3

5

Input

2 1

4 3

5

Input

2 1

4 3

5

Input

Factor 1

2 1

4 3

5

Input

Factor 1 Factor 2

Collect data

Build model(s)

Fit your model

parameters to

the data

Pick the best

model

Make an

inference

(conclusion)

The DCM analysis pathway

Fixed

parameters

Fitting DCMs to data

Fitting DCMs to data

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 1

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 2

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 3

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 4

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 5

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 6

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 7

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 8

time (ms)

trial 1 (predicted)

trial 1 (observed)

trial 2 (predicted)

trial 2 (observed)

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

time (ms)

Observed (adjusted) 1

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

channels

time

(ms)

Predicted

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

time (ms)

Observed (adjusted) 2

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

channels

time

(ms)

Predicted

H. Brown

Fitting DCMs to data

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 1

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 2

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 3

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 4

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 5

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 6

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 7

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 8

time (ms)

trial 1 (predicted)

trial 1 (observed)

trial 2 (predicted)

trial 2 (observed)

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

time (ms)

Observed (adjusted) 1

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

channels

time

(ms)

Predicted

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

time (ms)

Observed (adjusted) 2

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

channels

time

(ms)

Predicted

H. Brown

Fitting DCMs to data

1. Check your data

0 50 100 150 200-5

0

5x 10

-14

time (ms)

Observed response 1

channels

peri-

stim

ulus

tim

e (m

s)

Observed response 1

50 100 150 200 250

0

50

100

150

200

0 50 100 150 200-5

0

5x 10

-14

time (ms)

Observed response 2

channels

peri-

stim

ulus

tim

e (m

s)

Observed response 2

50 100 150 200 250

0

50

100

150

200

H. Brown

Fitting DCMs to data

1. Check your data

2. Check your sources

H. Brown

1. Check your data

2. Check your sources

3. Check your model

Model 1

V4

IPLA19

OFC

V4

IPLA19

OFC

V4

IPL

Model 2

V4

IPL

H. Brown

Fitting DCMs to data

Fitting DCMs to data

1. Check your data

2. Check your sources

3. Check your model

4. Re-run model fitting

H. Brown

Collect data

Build model(s)

Fit your model

parameters to

the data

Pick the best

model

Make an

inference

(conclusion)

The DCM analysis pathway

Friston et al., 2016

Collect data

Build model(s)

Fit your model

parameters to

the data

Pick the best

model

Make an

inference

(conclusion)

The DCM analysis pathway

Does network XYZ explain my data better than network XY?

Which XYZ connectivity structure best explains my data?

Are X & Y linked in a bottom-up, top-down or recurrent fashion?

Is my effect driven by extrinsic or intrinsic connections?

Which connections/populations are affected by contextual factors?

input

context

Garrido et al., 2008

Example #1: Architecture of MMN

Garrido et al., 2007

Example #2: Role of feedback connections

Boly et al., 2011

Example #3: Group differences

Auksztulewicz & Friston, 2015

Example #4: Factorial design & CMC

Bastos et al., Neuron 2012

Attentioncf. Feldman & Friston, 2010

L2/3

L4

L5/6

smx

m

xx

FORWARD PREDICTION ERROR

BACKWARD PREDICTIONS

A1ST

G

xx

p

2x2 design:

Attended vs unattended

Standard vs deviant

(Only trials with 2 tones)

N=20

Auksztulewicz & Friston, 2015

Flexible factorial design

Thresholded at p<.005 peak-level

Corrected at a cluster-level pFWE<.05

Contr

ast estim

ate

Attention Expectation

Auksztulewicz & Friston, 2015

Flexible factorial design

Thresholded at p<.005 peak-level

Corrected at a cluster-level pFWE<.05

Contr

ast estim

ate

A1E1 A1E0 A0E1 A0E0

Auksztulewicz & Friston, 2015

inputinput

inputinput

Inh

Int

input

SP

input

Connectivity structure

Extrinsic modulation

Intrinsic modulation

Auksztulewicz & Friston, 2015

Example #5: Same paradigm, different data

Phillips et al., 2016

Example #5: Same paradigm, different data

Phillips et al., 2016

Example #6: Hierarchical modelling

Rosch et al., 2017

Evoked response potentials at Fz

Example #6: Hierarchical modelling

Rosch et al., 2017

Useless

data

Perfect

model

Useless

results

Perfect

data

Useless

model

Useless

results

Motivate your assumptions!

Thank you!

Karl Friston

Gareth Barnes

Andre Bastos

Harriet Brown

Hayriye Cagnan

Jean Daunizeau

Marta Garrido

Stefan Kiebel

Vladimir Litvak

Rosalyn Moran

Will Penny

Dimitris Pinotsis

Richard Rosch

Bernadette van Wijk