Digital Image Processing Chapter 4: Image Enhancement in the Frequency Domain.

Post on 20-Dec-2015

234 views 8 download

Tags:

transcript

Digital Image Processing

Chapter 4: Image Enhancement in the Frequency Domain

Background

The French mathematiian Jean Baptiste Joseph Fourier Born in 1768 Published Fourier series in 1822 Fourier’s ideas were met with

skepticism Fourier series

Any periodical function can be expressed as the sum of sines and/or cosines of different frequencies, each multiplied by a different coefficient

Fourier transform Functions can be expressed as the

integral of sines and/or cosines multiplied by a weighting function

Functions expressed in either a Fourier series or transform can be reconstructed completely via an inverse process with no loss of information

1),( yx2222222 2/)()(222 vuyx AeeA

Applications Heat diffusion Fast Fourier transform (FFT) developed

in the late 1950s

Introduction to the Fourier Transform and the Frequency Domain

The one-dimensional Fourier transform and its inverse Fourier transform

Inverse Fourier transform

dxexfuF uxj 2)()(

dueuFxf uxj 2)()(

Two variables

dxdyeyxfvuF vyuxj )( 2),(),(

dudvevuFyxf vyuxj )( 2),(),(

Fourier transform

Inverse Fourier transform

Discrete Fourier transform (DFT) Original variable

Transformed variable

1,...,2,1,0),( Mxxf

1,...,2,1,0),( MuuF

1,...,2,1,0

,)(1

)(1

0

/ 2

Mu

exfM

uFM

x

Muxj

1,...,2,1,0

,)()(1

0

/ 2

Mx

euFxfM

u

Muxj

DFT The discrete Fourier transform and its

inverse always exist f(x) is finite in the book

Sines and cosines

sincos je j

1

0

]/ 2sin/ 2)[cos(1

)(M

x

MuxjMuxxfM

uF

Time domain

Time components

Frequency domain

Frequency components

x

)(xf

u

)(uF

Fourier transform and a glass prism Prism

Separates light into various color components, each depending on its wavelength (or frequency) content

Fourier transform Separates a function into various

components, also based on frequency content

Mathematical prism

Polar coordinates

Real part

Imaginary part

)()()( ujeuFuF

)(uR

)(uI

Magnitude or spectrum

Phase angle or phase spectrum

Power spectrum or spectral density

2122 )()()( uIuRuF

)(

)(tan)( 1

uR

uIu

)()()()( 222uIuRuFuP

Samples

)()( 0 xxxfxf

)()( uuFuF

xMu

1

Some references http://local.wasp.uwa.edu.au/~pbourke/

other/dft/ http://homepages.inf.ed.ac.uk/rbf/HIPR2

/fourier.htm

Examples test_fft.c fft.h fft.c Fig4.03(a).bmp test_fig2.bmp

The two-dimensional DFT and its inverse

1,...,2,1,0

1,...,2,1,0

,),(1

),(1

0

1

0

)// (2

Nv

Mu

eyxfMN

vuFM

x

N

y

NvyMuxj

Spatial, or image variables: x, y Transform, or frequency variables:

u, v

1,...,2,1,0y

1,...,2,1,0 x

,),(),(1

0

1

0

)// (2

N

M

evuFyxfM

u

N

v

NvyMuxj

Magnitude or spectrum

Phase angle or phase spectrum

Power spectrum or spectral density

2122 ),(),(),( vuIvuRvuF

),(

),(tan),( 1

vuR

vuIvu

),(),(),(),( 222vuIvuRvuFvuP

Centering

Average gray level F(0,0) is called the dc component of the

spectrum

)2/,2/()1)(,( NvMuFyxf yx

1

0

1

0

),(1

)0,0(M

x

N

y

yxfMN

F

Conjugate symmetric If f(x,y) is real

Relationships between samples in the spatial and frequency domains

),(*),( vuFvuF

),(),( vuFvuF

xMu

1

yNv

1

The separation of spectrum zeros in the u-direction is exactly twice the separation of zeros in the v direction

Filtering in the frequency domain

Strong edges that run approximately at +45 degree, and -45 degree

The inclination off horizontal of the long white element is related to a vertical component that is off-axis slightly to the left

The zeros in the vertical frequency component correspond to the narrow vertical span of the oxide protrusions

Basics of filtering in the frequency domain 1. Multiply the input image by

to center the transform 2. Compute F(u,v) 3. Multiply F(u,v) by a filter function

H(u,v) 4. Compute the inverse DFT 5. Obtain the real part 6. Multiply the result by

yx )1(

yx )1(

Fourier transform of the output image

zero-phase-shift filter Real H(u,v)

),(),(),( vuFvuHvuG

),(

),(tan),( 1

vuR

vuIvu

Inverse Fourier transform of G(u,v)

The imaginary components of the inverse transform should all be zero When the input image and the filter

function are real

),(1 vuG

Set F(0,0) to be zero, a notch filter

otherwise1

)2/,2/(),( if0),(

NMvuvuH

Lowpass filter Pass low frequencies, attenuate high

frequencies Blurring

Highpass filter Pass high frequencies, attenuate low

frequencies Edges, noise

Convolution theorem

1

0

1

0

),(),(1

),(*),(M

m

N

n

nymxhnmfMN

yxhyxf

),(),(),(*),( vuHvuFyxhyxf

),(*),(),(),( vuHvuFyxhyxf

Impulse function of strength A

),( 00 yyxxA

),(),(),( 00

1

0

1

000 yxAsyyxxAyxs

M

x

N

y

)0,0(),(),(1

0

1

0

AsyxAyxsM

x

N

y

MN

eyxMN

vuFM

x

N

y

NyvMxuj

1

),(1

),(1

0

1

0

)/ / (2

),(1

),(),(1

),(*),(1

0

1

0

yxhMN

nymxhnmMN

yxhyxfM

m

N

n

),(),(),(*),( vuHvuFyxhyxf

),(),(),(*),( vuHyxyxhyx

),(),( vuHyxh

Gaussian filter

22 2/)( uAeuH 22222)( xAexh

Highpass filter

22

221

2 2/2/)( uu BeAeuH 22

2222

12 2

22

1 22)( xx BeAexh

21 and BA

Smoothing Frequency-Domain Filterers

Ideal lowpass filters

),(),(),( vuFvuHvuG

0

0

Dv)D(u, if0

Dv)D(u, if1),( vuH

2/1 22 )2/()2/(),( NvMuvuD

Cutoff frequency

Total image power

Portion of the total power

0D

1

0

1

0

),(M

u

N

vT vuPP

u vTPvuP /),(100

Blurring and ringing properties Filter

Convolution

: Spatial filter was multiplied by Then the inverse DFT The real part of the inverse DFT was

multiplied by

),(),(),( vuFvuHvuG

),(*),(),( yxfyxhyxg ),( yxh

),( vuH vu )1(

yx )1(

The filter A dominant component at the origin Concentric, circular components about

the center component --- ringing The radius of the center component

and the number of circles per unit distance from the origin are inversely proportional to the value of the cutoff frequency of the ideal filter.

),( yxh

Butterworth lowpass filters

when

nDvuDvuH 2

0/),(1

1),(

2/1 22 )2/()2/(),( NvMuvuD

5.0),( vuH 0),( DvuD

Butterworth lowpass filters Order 1: No ringing Order 2: Imperceptible ringing Higher order: Ringing becomes a

significant factor

Gaussain lowpass filters

When

No ringing

22 2/),(),( vuDevuH

2/1 22 )2/()2/(),( NvMuvuD

20

2 2/),(),( DvuDevuH

0D

Additional examples of lowpass filters Machine perception Printing and publishing Satellite and aerial images

Sharpening Frequency Domain Filters

Highpass filter

Spatial filter: was multiplied by Then the inverse DFT The real part of the inverse DFT was

multiplied by

),(1),( vuHvuH lphp

),( yxh),( vuH vu )1(

yx )1(

Ideal highpass filters

0

0

Dv)D(u, if1

Dv)D(u, if0),( vuH

2/1 22 )2/()2/(),( NvMuvuD

Butterworth highpass filters

nvuDDvuH 2

0 ),(/1

1),(

2/1 22 )2/()2/(),( NvMuvuD

Gaussian highpass filters

2/1 22 )2/()2/(),( NvMuvuD

20

2 2/),(1),( DvuDevuH

The Laplacian in the frequency domain

)()()(

uFjudx

xfd nn

n

),()(

),()(),()(

),(),(

22

22

2

2

2

2

vuFvu

vuFjvvuFju

y

yxf

x

yxf

)(),( 22 vuvuH

),()(),( 222 vuFvuyxf

22 )2/()2/(),( NvMuvuH

After centering

Inverse Fourier transform

Fourier-transform pair

),()2/()2/(

),(221

2

vuFNvMu

yxf

),()2/()2/(

),(22

2

vuFNvMu

yxf

Subtracting the Laplacian from the original image

),( )2/()2/(1

),(221 vuFNvMu

yxg

),(),(),( 2 yxfyxfyxg

Unsharp masking, high-boost filtering, and high-frequency emphasis filtering Highpass filtering

High-boost filtering

),(),(),( yxfyxfyxf lphp

),(),(),( yxfyxAfyxf lphb

Frequency domain

),(),(),()1(),( yxfyxfyxfAyxf lphb

),(),()1(),( yxfyxfAyxf hphb

),(1),( vuHvuH lphb

),()1(),( vuHAvuH hphb

High-frequency emphasis

where and

),(),( vubHavuH hphfe

0a ab

Homomorphic Filtering

Illumination and reflectance components

Derivations

),(),(),( yxryxiyxf

),(),(),( yxryxiyxf

),(ln),(ln

),(ln),(

yxryxi

yxfyxz

Or

),(ln),(ln

),(ln),(

yxryxi

yxfyxz

),(),(),( vuFvuFvuZ ri

Frequency domain

Spatial domain

),(),(),(),(

),(),(),(

vuFvuHvuFvuH

vuZvuHvuS

ri

),(),(

),(),(

),(),(

1

1

1

vuFvuH

vuFvuH

vuSyxs

r

i

),(),(),(' 1 vuFvuHyxi i

),(),(),(' 1 vuFvuHyxr r

),('),('),( yxryxiyxs

),(),(

),(

00

),('),('),(

yxryxi

eeeyxg yxryxiyxs

Decrease the contribution made by the low frequencies (illumination)

Amplify the contribution made by high frequencies (reflectance)

Simultaneous dynamic range compression and contrast enhancement

LDvuDc

LH evuH )/),(( 20

2

1)(),(

Implementation

Translation

When and

),(),( 00)//(2 00 vvuuFeyxf NyvMxuj

)//(200

00),(),( NvyMuxjevuFyyxxf

yx

yxjNyvMxuj ee

)1(

)()//(2 00

2/0 Mu 2/0 Nv

)2/,2/()1)(,( NvMuFyxf yx

vuvuFNyMxf )1)(,()2/,2/(

Distributivity and scaling

),(),(),(),( 2121 yxfyxfyxfyxf

),(),( vuaFyxaf

)/,/(1

),( bvauFab

byaxf

Rotation Polar coordinates

Rotating by an angle rotates by the same angle

cosrx sinry coswu sinwv

),(),( wFrf ),(),( 00 wFrf

),( yxf 0),( vuF

Periodicity and conjugate symmetry Periodicity property

),(),(

),(),(

NvMuFNvuF

vMuFvuF

),(),(

),(),(

NyMxfNyxf

yMxfyxf

Conjugate symmetry

Symmetry of the spectrum

),(),( * vuFvuF

),(),( vuFvuF

),(),( vuFvuF

),(),( vuFvuF

Separability

1

0

)/ (2

1

0

)/ v(21

0

)/ (2

1

0

1

0

)// (2

),(1

),(11

),(1

),(

M

x

Muxj

N

y

NyjM

x

Muxj

M

x

N

y

NvyMuxj

evxfM

eyxfN

eM

eyxfMN

vuF

where

We can compute the 2-D transform by first computing a 1-D transform along each row of the input image, and then computing a 1-D transform along each column of this intermediate result

1

0

)/ v(2),(1

),(N

y

NyjeyxfN

vxF

Computing the inverse Fourier transform using a forward transform algorithm

1,...,2,1,0

,)(1

)(1

0

/ 2

Mu

exfM

uFM

x

Muxj

Calculate

1,...,2,1,0

,)()(1

0

/ 2

Mx

euFxfM

u

Muxj

1

0

/ 2** )(1

)(1 M

u

MuxjeuFM

xfM

Inputting into an algorithm designed to compute the forward transform gives the quantity

)(* uF

)(1 * xfM

2-D

1

0

1

0

)// (2*

*

),(1

),(1

M

u

N

v

NvyMuxjevuFMN

yxfMN

More on periodicity: the need for padding Convolution: Flip one of the functions

and slide it pass the other

1

0

)()(1

)()(M

m

mxhmfM

xhxf