Discrete Conformal Maps - TU Berlin

Post on 01-Dec-2021

5 views 0 download

transcript

Discrete Riemann Surfaces

Introduction

Discrete Conformal Maps

period matrices and all that

Alexander Bobenko1, Christian Mercat2,Markus Schmies1

1 Technische Universitat Berlin (FZT 86, F5),2 Institut de Mathematiques et de Modelisation de

Montpellier (I3M, UM2)

Discrete Differential Geometry 07

Discrete Riemann Surfaces

Introduction

Peter Schroder & al., CalTech

Global parametrization sending little circles to circles. Riemanntheorem mapping a topological disk to the unit disk or with freeboundaries (see M. Desbrun & al. or C. Gotsman & M. Ben-Chen)

Discrete Riemann Surfaces

Introduction

X. Gu & S.-T. Yau, Harvard Uni.

Surface interpolation (especially staying isometric). Texturemapping. Surface matching. Remeshing, coarsening, refining.

Discrete Riemann Surfaces

Introduction

Monica K. Hurdal & al., Florida State UniversityCommonly parametrize different surfaces

to compare functions on them.

Discrete Riemann Surfaces

Introduction

Tony Chan, UCLA

Whether preserving little circles (see K. Stephenson) or preservinglittle squares.

Discrete Riemann Surfaces

Introduction

Linear and quadratic conformality

f is conformal ⇒ f (z) =

az + b + o(z),az + bcz + d + o(z2).

Two notions on a “quad-graph”:– Preserve the diagonal ratio (linear),– or preserve the cross-ratio (Mobius invariant).

y ′

x ′

y

x

Diagonals ratio:y ′ − y

x ′ − x= i ρ

y ′ − x ′

x ′ − y

y − x

x − y ′= q

Crossratio:

Discrete Riemann Surfaces

Introduction

Linear and quadratic conformality

f is conformal ⇒ f (z) =

az + b + o(z),az + bcz + d + o(z2).

Two notions on a “quad-graph”:– Preserve the diagonal ratio (linear),– or preserve the cross-ratio (Mobius invariant).

y ′

x ′

y

x

Diagonals ratio:y ′ − y

x ′ − x= i ρ =

f (y ′)− f (y)

f (x ′)− f (x)

y ′ − x ′

x ′ − y

y − x

x − y ′= q

Crossratio:

Discrete Riemann Surfaces

Introduction

Linear and quadratic conformality

f is conformal ⇒ f (z) =

az + b + o(z),az + bcz + d + o(z2).

Two notions on a “quad-graph”:– Preserve the diagonal ratio (linear),– or preserve the cross-ratio (Mobius invariant).

y ′

x ′

y

x

Diagonals ratio:y ′ − y

x ′ − x= i ρ

y ′ − x ′

x ′ − y

y − x

x − y ′= q

Crossratio:

=f (y ′)− f (x ′)f (x ′)− f (y)

f (y)− f (x)

f (x)− f (y ′)

Discrete Riemann Surfaces

Introduction

Circle patterns

Circle patterns are a particular case

−→

x

y

y ′

x ′θ θ′

ρ =cos(θ−θ′)−cos(ϕ)

sin(ϕ)

ϕ

ϕq = e−2(θ+θ′)

= e−2ϕ

Discrete Riemann Surfaces

Introduction

Hirota System

A function F preserving the cross-ratio can be written in termsof a function f such that

F (y)− F (x) = f (x) f (y) (y − x) = “F ′(z) dz”.

fulfilling on the face (x , y , x ′, y ′),y ′

x ′

y

x

∮F ′(z) dz = f (x) f (y) (y − x) + f (y) f (x ′) (x ′ − y) +

f (x ′) f (y ′) (y ′ − x ′) + f (y ′) f (x) (x − y ′) = 0

Circle patterns case: F (y)− F (x) = r(x) e i θ(y) (y − x).

Discrete Riemann Surfaces

Introduction

Morera equationH

F ′(z) dz = 0

Understood as Morera equations where function integration is

I the geometric mean for cross-ratio preserving maps

(x ,y)g dZ :=

√g(x) g(y) (y − x).

I the arithmetic mean for diagonal ratio preserving maps

(x ,y)g dZ :=

g(x) + g(y)

2(y − x).

Discrete Riemann Surfaces

Introduction

From quadratic to linear

When the quadratic case is linearized:

Discrete Riemann Surfaces

Introduction

From quadratic to linear

Circle patterns preserve circles and intersection angles. Linearmaps preserve the shape of dual/primal polygons, the derivativef ′(z) locally inflates and turns each polygon, the Morera equation∮

f ′(z) dZ = 0 insures that they fit together. Compare with thecontinuous case: http://ens.math.univ-montp2.fr/SPIP/-Deformer-par-une-application-

z 7→ z3

Discrete Riemann Surfaces

Linear theory

de Rham Cohomology

2. Face dual to a vertex.1. Dual edges.0. Vertex dual to a face.

e∗F∗e

v1

v2

v

vn

The double Λ = Γ⊕ Γ∗

The chains-complex C (Λ) = C0(Λ)⊕ C1(Λ)⊕ C2(Λ)linear combination of vertices (0), edges (1) and faces (2).boundary operator ∂ : Ck(Λ)→ Ck−1(Λ)Null on vertices, ∂2 = 0.Its kernel ker ∂ =: Z•(Λ) are the closed chains or cycles.Its image are the exact chains.

Discrete Riemann Surfaces

Linear theory

de Rham Cohomology

The space dual to chains form the cochains,C k(Λ) := Hom(Ck(Λ),C).Evaluation is denoted f (x),

∫(x ,x ′) α,

∫∫F ω.

The coboundary is dual to the boundary. d : C k(Λ)→ C k+1(Λ),defined by Stokes formula

(x ,x ′)

df := f(∂(x , x ′)

)= f (x ′)− f (x),

∫∫

F

dα :=

∂F

α.

A cocycle is a closed cochain α ∈ Z k(Λ).

Discrete Riemann Surfaces

Linear theory

Metric, Hodge operator, Laplacian

Scalar product weighted by ρ

ρ(x ,x ′) = −i y ′−yx ′−x

y ′

xx ′

y

(α, β) := 12

e∈Λ1

ρ(e)

(∫

)(∫

). (1)

Discrete Riemann Surfaces

Linear theory

Metric, Hodge operator, Laplacian

A Hodge operator ∗

∗ : C k(Λ) → C 2−k(Λ)

C 0(Λ) 3 f 7→ ∗f :

∫∫

F∗f := f (F ∗),

C 1(Λ) 3 α 7→ ∗α :

e∗α := −ρ(e∗)

e∗α, (2)

C 2(Λ) 3 ω 7→ ∗ω : (∗ω)(x) :=

∫∫

x∗ω.

Verifies ∗2 = (−IdC k )k .The discrete laplacian ∆ = ∆Γ ⊕∆Γ∗ := −d ∗ d ∗ − ∗ d ∗ d :

(∆(f )) (x) =V∑

k=1

ρ(x , xk) (f (x)− f (xk)) .

Its kernel are the harmonic forms.

Discrete Riemann Surfaces

Linear theory

Holomorphic forms

α ∈ C 1(Λ) is conformal iff dα = 0 and ∗ α = −iα, (3)

π(1,0) =1

2(Id + i ∗) π(0,1) =

1

2(Id− i ∗)

d ′ := π(1,0)d : C 0(Λ)→ C 1(Λ), d ′ := dπ(1,0) : C 1(Λ)→ C 2(Λ)

f ∈ Ω0(Λ) iff d ′(f ) = 0.

− ∗ d ∗ = d∗ the adjoint of the coboundary

C k(Λ) = Im d ⊕⊥ Im d∗ ⊕⊥ Ker ∆,

Ker ∆ = Ker d ∩ Ker d∗ = Ker d ′ ⊕⊥ Ker d ′′.

Discrete Riemann Surfaces

Linear theory

External Product

∧ : C k(♦)× C l(♦)→ C k+l(♦) s.t. (α, β) =

∫∫α ∧ ∗β

For f , g ∈ C 0(♦), α, β ∈ C 1(♦) et ω ∈ C 2(♦):

(f · g)(x) :=f (x) · g(x) for x ∈ ♦0,∫

(x ,y)

f · α :=f (x) + f (y)

2

(x ,y)

α for (x , y) ∈ ♦1,

∫∫

(x1,x2,x3,x4)

α ∧ β :=14

4∑

k=1

(xk−1,xk )

α

(xk ,xk+1)

β −∫

(xk+1,xk )

α

(xk ,xk−1)

β,

∫∫

(x1,x2,x3,x4)

f · ω :=f (x1)+f (x2)+f (x3)+f (x4)

4

∫∫

(x1,x2,x3,x4)

ω

for (x1, x2, x3, x4) ∈ ♦2.

Discrete Riemann Surfaces

Linear theory

External Product

∧ : C k(♦)× C l(♦)→ C k+l(♦) s.t. (α, β) =

∫∫α ∧ ∗β

For f , g ∈ C 0(♦), α, β ∈ C 1(♦) et ω ∈ C 2(♦):

(f · g)(x) :=f (x) · g(x) for x ∈ ♦0,∫

(x ,y)

f · α :=f (x) + f (y)

2

(x ,y)

α for (x , y) ∈ ♦1,

∫∫

(x1,x2,x3,x4)

α ∧ β :=14

4∑

k=1

(xk−1,xk )

α

(xk ,xk+1)

β −∫

(xk+1,xk )

α

(xk ,xk−1)

β,

∫∫

(x1,x2,x3,x4)

f · ω :=f (x1)+f (x2)+f (x3)+f (x4)

4

∫∫

(x1,x2,x3,x4)

ω

for (x1, x2, x3, x4) ∈ ♦2.

Discrete Riemann Surfaces

Linear theory

External Product

A form on ♦ can be averaged into a form on Λ:

(x ,x ′)

A(α♦) := 12

(x ,y)

+

(y ,x ′)

+

(x ,y ′)

+

(y ′,x ′)

α♦, (4)

∫∫

x∗

A(ω♦) := 12

d∑

k=1

∫∫

(xk ,yk ,x ,yk−1)

ω♦, (5)

Ker(A) = Span(d♦ε)

Discrete Riemann Surfaces

Main Results

Discrete Harmonicity

I Hodge Star: ∗ : C k → C 2−k ,∫(y ,y ′) ∗α := ρ(x ,x ′)

∫(x ,x ′) α.

I Discrete Laplacian:d∗ := − ∗ d ∗, ∆ := d d∗ + d∗d ,∆ f (x) =

∑ρ(x ,xk )(f (x)− f (xk)).

I Hodge Decomposition:C k = Imd ⊕⊥ Imd∗ ⊕⊥ Ker ∆, Ker ∆1 = C (1,0) ⊕⊥ C (0,1).

I Weyl Lemma:∆ f = 0⇐⇒ ∫∫

f ∗∆g = 0, ∀g compact.

I Green Identity:∫∫D(f ∗∆g − g ∗∆f ) =

∮∂D(f ∗ dg − g ∗ df ).

cf Wardetzky, Polthier, Glickenstein, Novikov, Wilson

Discrete Riemann Surfaces

Main Results

Meromorphic Forms

α ∈ C 1 is conformal ⇐⇒∗α = −iα of type (1,0)

dα = 0 closed.

I α of type (1,0) (i.e.∫(y ,y ′) α = iρ(x ,x ′)

∫(x ,x ′) α) has a pole of

order 1 in v with a residue Resv α := 12iπ

∮∂v∗ α 6= 0.

I If α is not of type (1,0) on (x , y , x ′, y ′), it has a pole oforder > 1.

I Discrete Riemann-Roch theorem: Existence of forms withprescribed poles and holonomies.

I Green Function and Potential, Cauchy Integral Formula:∮∂D f · νx ,y = 2iπ f (x)+f (y)

2 .

I Period Matrix, Jacobian, Abel’s map, Riemann bilinearrelations.

I Continuous limit theorem in locally flat regions (criticality).

Discrete Riemann Surfaces

Main Results

Dirac spinor

ξ2

ξ3ξ4

y

ξ1

φ(y ,y ′)x ′

y ′

x

(x ,y ,x ′,y ′)ξ√

dZ = 0

Υ

Υ

Ising model ρ(e) = sinh2Ke , is critical iff the fermion ψxy = σx µy

is a discrete massless Dirac spinor. Criticality has a meaning atfinite size: compatibility with holomorphicity.Off criticality: massive spinor.(see V. Bazhanov, D. Cimasoni and U. Pinkall)

Discrete Riemann Surfaces

Main Results

Energies

The L2-norm of the 1-form df is the Dirichlet energy

ED(f ) := ‖df ‖2 = (df , df ) =1

2

(x ,x ′)∈Λ1

ρ(x , x ′)∣∣f (x ′)− f (x)

∣∣2

=ED(f |Γ) + ED(f |Γ∗)

2.

The conformal energy of the map measures its conformalitydefect

EC (f ) := 12‖df − i ∗ df ‖2.

Discrete Riemann Surfaces

Main Results

Energies

Dirichlet and Conformal energies are related through

EC (f ) = 12 (df − i ∗ df , df − i ∗ df )

= 12‖df ‖2 + 1

2‖−i ∗ df ‖2 + Re(df , −i ∗ df )

= ‖df ‖2 + Im

∫∫

♦2

df ∧ df

= ED(f )− 2A(f )

with the algebraic area of the image

A(f ) :=i

2

∫∫

♦2

df ∧ df

On a face the algebraic algebra of the image reads∫∫

(x ,y ,x ′,y ′)

df ∧ df = i Im((f (x ′)− f (x))(f (y ′)− f (y))

)

= −2iA(f (x), f (x ′), f (y), f (y ′)

)

Discrete Riemann Surfaces

Main Results

Complex discrete structure

(∫(x ,x ′) ∗α∫(y ,y ′) ∗α

):=

1

cos θ

(− sin θ −1r

r sin θ

) (∫(x ,x ′) α∫(y ,y ′) α

).

(α, β) :=

∫∫

♦α ∧ ∗β = 1

2

e∈Λ1

∫e α

Re (ρe)

(|ρe |2

eβ + Im (ρe)

e∗β

)

ED(f ) := ‖df ‖2 =1

2

e∈Λ1

|f (x ′)− f (x)|2Re (ρe)

(|ρe |2 + Im (ρe)

f (y ′)− f (y)

f (x ′)− f (x)

).

For x0 ∈ Λ0, x∗0 = (y1, y2, . . . , yV ) ∈ Λ2, (x0, xk)∗ = (yk , yk+1) ∈ Λ1,

∆(f )(x0) =V∑

k=1

1

Re(ρe

)(|ρe |2

(f (xk)−f (x)

)+Im

(ρe

)(f (yk+1)−f (yk)

))

Discrete Riemann Surfaces

Main Results

Algorithm

I Basis of holomorphic forms(a discrete Riemann surface S)

I find a normalized homotopy basis ℵ of ¦(S)

I foreach ℵk

I I compute ℵΓk and ℵΓ∗

kI compute the real discrete harmonic form ωk on Γ s.t.∮

γωk = γ · ℵΓ

kI compute the form ∗ωk on Γ∗I check it is harmonic on on Γ∗I compute its holonomies (

∮ℵΓ∗

`∗ωk)k,` on the dual graph

I do some linear algebra (R is a rectangular complex matrix) toget the basis of holomorphic forms (ζk)k = R(Id + i ∗)(ωk)ks.t. (

∮ℵΓ

`ζk) = δk,`

I define the period matrix Πk,` := (∮ℵΓ∗

`ζk)

Discrete Riemann Surfaces

Main Results

Algorithm

I spanning tree(a root vertex)

I tree ← sd ← root; sdp1← ∅; points ← all the vertices;

I while points 6= ∅I points ← points \ sd

I foreach v ∈ sdI I foreach v ′ ∼ v

I I if v ′ ∈ pointsI sdp1← sdp1 ∪ v ′I tree ← tree ∪ (v , v ′)

I sd ← sdp1; sdp1← ∅I return tree

Discrete Riemann Surfaces

Main Results

Algorithm

I spanning tree(a root vertex)

I tree ← sd ← root; sdp1← ∅; points ← all the vertices;

I while points 6= ∅I points ← points \ sd

I foreach v ∈ sdI I foreach v ′ ∼ v

I I if v ′ ∈ pointsI sdp1← sdp1 ∪ v ′I tree ← tree ∪ (v , v ′)

I sd ← sdp1; sdp1← ∅I return tree

Discrete Riemann Surfaces

Main Results

Algorithm

I spanning tree(a root vertex)

I tree ← sd ← root; sdp1← ∅; points ← all the vertices;

I while points 6= ∅I points ← points \ sd

I foreach v ∈ sdI I foreach v ′ ∼ v

I I if v ′ ∈ pointsI sdp1← sdp1 ∪ v ′I tree ← tree ∪ (v , v ′)

I sd ← sdp1; sdp1← ∅I return tree

Discrete Riemann Surfaces

Main Results

Algorithm

I spanning tree(a root vertex)

I tree ← sd ← root; sdp1← ∅; points ← all the vertices;

I while points 6= ∅I points ← points \ sd

I foreach v ∈ sdI I foreach v ′ ∼ v

I I if v ′ ∈ pointsI sdp1← sdp1 ∪ v ′I tree ← tree ∪ (v , v ′)

I sd ← sdp1; sdp1← ∅I return tree

Discrete Riemann Surfaces

Main Results

Algorithm

I fundamental polygon(a spanning tree)I faces ← all the faces; edges ← tree ∪ tree;

toClose : faces → P(all the edges);I foreach (face ∈ faces) facesToClose(face)← ∂(face) \ edgesI doI I finished ← true

I foreach (face ∈ faces such that |facesToClose(face)| == 1)I I finished ← false; e = facesToClose(face);

I edges ← edges \ e, e; faces ← faces \ face;lface ← leftFace(e);

I if (lface)I facesToClose(lface)← facesToClose(lface \ e)Iif (|facesToClose(lface)| == 0) faces ← faces \ lface;

I while (not(finished));

I return facesToClose

Discrete Riemann Surfaces

Main Results

Algorithm

I fundamental polygon(a spanning tree)I faces ← all the faces; edges ← tree ∪ tree;

toClose : faces → P(all the edges);I foreach (face ∈ faces) facesToClose(face)← ∂(face) \ edgesI doI I finished ← true

I foreach (face ∈ faces such that |facesToClose(face)| == 1)I I finished ← false; e = facesToClose(face);

I edges ← edges \ e, e; faces ← faces \ face;lface ← leftFace(e);

I if (lface)I facesToClose(lface)← facesToClose(lface \ e)Iif (|facesToClose(lface)| == 0) faces ← faces \ lface;

I while (not(finished));

I return facesToClose

Discrete Riemann Surfaces

Main Results

Algorithm

I fundamental polygon(a spanning tree)I faces ← all the faces; edges ← tree ∪ tree;

toClose : faces → P(all the edges);I foreach (face ∈ faces) facesToClose(face)← ∂(face) \ edgesI doI I finished ← true

I foreach (face ∈ faces such that |facesToClose(face)| == 1)I I finished ← false; e = facesToClose(face);

I edges ← edges \ e, e; faces ← faces \ face;lface ← leftFace(e);

I if (lface)I facesToClose(lface)← facesToClose(lface \ e)Iif (|facesToClose(lface)| == 0) faces ← faces \ lface;

I while (not(finished));

I return facesToClose

Discrete Riemann Surfaces

Main Results

Algorithm

I fundamental polygon(a spanning tree)I faces ← all the faces; edges ← tree ∪ tree;

toClose : faces → P(all the edges);I foreach (face ∈ faces) facesToClose(face)← ∂(face) \ edgesI doI I finished ← true

I foreach (face ∈ faces such that |facesToClose(face)| == 1)I I finished ← false; e = facesToClose(face);

I edges ← edges \ e, e; faces ← faces \ face;lface ← leftFace(e);

I if (lface)I facesToClose(lface)← facesToClose(lface \ e)Iif (|facesToClose(lface)| == 0) faces ← faces \ lface;

I while (not(finished));

I return facesToClose

Discrete Riemann Surfaces

Main Results

Algorithm

I fundamental polygon(a spanning tree)I faces ← all the faces; edges ← tree ∪ tree;

toClose : faces → P(all the edges);I foreach (face ∈ faces) facesToClose(face)← ∂(face) \ edgesI doI I finished ← true

I foreach (face ∈ faces such that |facesToClose(face)| == 1)I I finished ← false; e = facesToClose(face);

I edges ← edges \ e, e; faces ← faces \ face;lface ← leftFace(e);

I if (lface)I facesToClose(lface)← facesToClose(lface \ e)Iif (|facesToClose(lface)| == 0) faces ← faces \ lface;

I while (not(finished));

I return facesToClose

Discrete Riemann Surfaces

Numerics

Surfaces tiled by squares

Surface Period Matrix Numerical Analysis

Ω1 = i3

(5 −4−4 5

)#vertices ‖ΩD − Ω1‖∞

25 1.13 · 10−8

106 3.38 · 10−8

430 4.75 · 10−8

1726 1.42 · 10−7

6928 1.35 · 10−6

Ω2 = 13

( −2 +√

8i 1−√2i

1−√2i −2 +√

8i

)

#vertices ‖ΩD − Ω2‖∞14 3.40 · 10

−2

62 9.51 · 10−3

254 2.44 · 10−3

1022 6.12 · 10−4

4096 1.53 · 10−4

Ω3 = i√3

(2 −1−1 2

)#vertices ‖ΩD − Ω3‖∞

22 3.40 · 10−3

94 9.51 · 10−3

382 2.44 · 10−4

1534 6.12 · 10−5

6142 1.53 · 10−6

Discrete Riemann Surfaces

Numerics

Wente torus

Grid : 10× 10 Grid : 20× 20

Grid : 40× 40 Grid : 80× 80

τw ≈ 0.41300 . . .+ 0.91073 . . . i ≈ exp(i1.145045 . . . .).

Grid ‖τin − τw‖ ‖τex − τw‖10× 10 1.24 · 10−3 2.58 · 10−4

20× 20 2.10 · 10−4 5.88 · 10−4

40× 40 3.87 · 10−5 8.49 · 10−5

80× 80 6.54 · 10−6 7.32 · 10−5

Discrete Riemann Surfaces

Numerics

Lawson surface

1162 vertices 2498 vertices

Ωl =i√3

(2 −1−1 2

)

#vertices ‖Ωin − Ωl‖∞ ‖Ωex − Ωl‖∞1162 1.68 · 10−3 1.68 · 10−3

2498 3.01 · 10−3 3.20 · 10−3

10090 8.55 · 10−3 8.56 · 10−3

Discrete Riemann Surfaces

Quasi conformal maps

∂ and ∂

In the continuous case

for f (z + z0) = f (z0) + z × (∂f )(z0) + z × (∂f )(z0) + o(|z |),

(∂f )(z0) = limγ→z0

i

2A(γ)

γfd z , (∂f )(z0) = − lim

γ→z0

i

2A(γ)

γfdZ ,

along a loop γ around z0.leading to the discrete definition

∂ : C 0(♦) → C 2(♦)

f 7→ ∂f =[(x , y , x ′, y ′) 7→ − i

2A(x ,y ,x ′,y ′)

(x ,y ,x ′,y ′)

fdZ]

= (f (x ′)−f (x))(y ′−y)−(x ′−x)(f (y ′)−f (y))(x ′−x)(y ′−y)−(x ′−x)(y ′−y) ,

∂ : C 0(♦) → C 2(♦)

f 7→ ∂f =[(x , y , x ′, y ′) 7→ − i

2A(x ,y ,x ′,y ′)

(x ,y ,x ′,y ′)

fdZ]

= (f (x ′)−f (x))(y ′−y)−(x ′−x)(f (y ′)−f (y))(x ′−x)(y ′−y)−(x ′−x)(y ′−y) .

Discrete Riemann Surfaces

Quasi conformal maps

A conformal map f fulfills ∂f ≡ 0 and (with Z (u) denoted u)

∂f (x , y , x ′, y ′) =f (y ′)− f (y)

y ′ − y=

f (x ′)− f (x)

x ′ − x.

The jacobian J = |∂f |2 − |∂f |2 compares the areas:∫∫

(x ,y ,x ′,y ′)

df ∧ df = J

∫∫

(x ,y ,x ′,y ′)

dZ ∧ dZ .

Discrete Riemann Surfaces

Quasi conformal maps

Quasi-Conformal Maps

For a discrete function, one defines the dilatation coefficient

Df :=|fz |+ |fz ||fz | − |fz |

Df ≥ 1 for |fz | ≤ |fz | (quasi-conformal). Written in terms of thecomplex dilatation:

µf =fzfz

õf

7→

i√

µf

Discrete Riemann Surfaces

Quasi conformal maps

Quasi-Conformal Maps

For a discrete function, one defines the dilatation coefficient

Df :=|fz |+ |fz ||fz | − |fz |

Df ≥ 1 for |fz | ≤ |fz | (quasi-conformal). Written in terms of thecomplex dilatation:

µf =fzfz

7→

i√

µf

õf

Discrete Riemann Surfaces

Quasi conformal maps

Quasi-Conformal Maps

(Arnaud Cheritat and Xavier Buff, L. Emile Picard, Toulouse)

Discrete Riemann Surfaces

Criticality

Lozenges (Duffin) and Exponential

u1

u2

un = zu0 = O

exp(:λ: z) =∏

k

1 + λ2 (uk − uk−1)

1− λ2 (uk − uk−1)

.

Generalization of the well known formula

exp(λ z) =

(1 +

λ z

n

)n

+ O(z2

n) =

(1 + λ z

2 n

1− λ z2 n

)n

+ O(z3

n2).

Discrete Riemann Surfaces

Criticality

Lozenges (Duffin) and Exponential

The Green function on a lozenges graph is (Richard Kenyon)

G (O, x) = − 1

8π2 i

Cexp(:λ: x)

log δ2λ

λdλ

∆G (O, x) = δO,x , G (O, x)∼x→∞

log |x | on black vertices,

i arg(x) on white vertices.

Discrete Riemann Surfaces

Criticality

Lozenges (Duffin) and Exponential

Differentiation of the exponential with respect to λ yields

∂k

∂λkexp(:λ: z) =: Z :k: exp(:λ: z)

and λ = 0 defines the discrete polynomials Z :k: fulfillingexp(:λ: z) =

∑ Z :k:

k! , absolutely convergent for λ · δ < 1.The primitive of a conformal map is itself conformal:

(x ,y)f dZ :=

f (x) + f (y)

2(y − x).

One can solve “differential equations”, and polynomials fulfill

Z :k+1: = (k + 1)

∫Z :k: dZ ,

while the exponential fulfills

exp(:λ: z) =1

λ

∫exp(:λ: z) dZ .

Discrete Riemann Surfaces

Criticality

Lozenges (Duffin) and Exponential

There exists a discrete duality, with ε = ±1 on black and whitevertices, f † = ε f is conformal.The derivative f ′ of a conformal map f is

f ′(z) :=4

δ2

(∫ z

Of †dZ

)†+ λ ε,

and verifies f =∫

f ′dZ .

Discrete Riemann Surfaces

Backlund transformation

x ′

x ′λ

y ′λ

x

y

y ′

λ

y

x ′xy ′

We impose “vertically” the same equation as “horizontally”.The 3D consistency (see Y. Suris) or Yang-Baxter equation yieldsintegrability for rhombic quad-graphs:

y

x ′

y ′

y ′λ

x ′λ≡

y

x ′

y ′

y ′λ

x

Discrete Riemann Surfaces

Backlund transformation

x ′

x ′λ

y ′λ

x

y

y ′

y

x ′x

λ

We impose “vertically” the same equation as “horizontally”.The 3D consistency (see Y. Suris) or Yang-Baxter equation yieldsintegrability for rhombic quad-graphs:

y

x ′

y ′

y ′λ

x ′λ≡

y

x ′

y ′

y ′λ

x

Discrete Riemann Surfaces

Backlund transformation

x ′

x ′λ

y ′λ

x

y

y ′

λ

We impose “vertically” the same equation as “horizontally”.The 3D consistency (see Y. Suris) or Yang-Baxter equation yieldsintegrability for rhombic quad-graphs:

y

x ′

y ′

y ′λ

x ′λ≡

y

x ′

y ′

y ′λ

x

Discrete Riemann Surfaces

Backlund transformation

x ′

x ′λ

y ′λ

x

y

y ′

λ

We impose “vertically” the same equation as “horizontally”.The 3D consistency (see Y. Suris) or Yang-Baxter equation yieldsintegrability for rhombic quad-graphs:

y

x ′

y ′

y ′λ

x ′λ≡

y

x ′

y ′

y ′λ

x

Discrete Riemann Surfaces

Backlund transformation

x ′

x ′λ

y ′λ

x

y

y ′

λ

We impose “vertically” the same equation as “horizontally”.The 3D consistency (see Y. Suris) or Yang-Baxter equation yieldsintegrability for rhombic quad-graphs:

y

x ′

y ′

y ′λ

x ′λ≡

y

x ′

y ′

y ′λ

x

Discrete Riemann Surfaces

Backlund transformation

x ′

x ′λ

y ′λ

x

y

y ′

λ

We impose “vertically” the same equation as “horizontally”.The 3D consistency (see Y. Suris) or Yang-Baxter equation yieldsintegrability for rhombic quad-graphs:

y

x ′

y ′

y ′λ

x ′λ≡

y

x ′

y ′

y ′λ

x

Discrete Riemann Surfaces

Backlund transformation

x ′

x ′λ

y ′λ

x

y

y ′

λ

We impose “vertically” the same equation as “horizontally”.The 3D consistency (see Y. Suris) or Yang-Baxter equation yieldsintegrability for rhombic quad-graphs:

y

x ′

y ′

y ′λ

x ′λ≡

y

x ′

y ′

y ′λ

x

Discrete Riemann Surfaces

Backlund transformation

The exponential

Buµ(F )

F G = Buλ(F )

Bv−λ(G )

expu(:λ:F ) := ∂∂v

Bv−λ(G )|v=u

A family of CR-preserving maps, initial condition u, “vertical”parameter λ. Induces a linear map between the tangent spaces. Itskernel: discrete exponential exp(:λ:F ). Form a basis

Discrete Riemann Surfaces

Backlund transformation

The exponential

Buµ(F )

Bu−µ(G )

F = Bu−λ(G ) G = Bu

λ(F )

Bv−λ(G )

expu(:λ:F ) := ∂∂v

Bv−λ(G )|v=u

A family of CR-preserving maps, initial condition u, “vertical”parameter λ. Induces a linear map between the tangent spaces. Itskernel: discrete exponential exp(:λ:F ). Form a basis

Discrete Riemann Surfaces

Backlund transformation

The exponential

Buµ(F )

Bu−µ(G )

F = Bu−λ(G ) G = Bu

λ(F )

Bv−λ(G )

expu(:λ:F ) := ∂∂v

Bv−λ(G )|v=u

A family of CR-preserving maps, initial condition u, “vertical”parameter λ. Induces a linear map between the tangent spaces. Itskernel: discrete exponential exp(:λ:F ). Form a basis

Discrete Riemann Surfaces

Backlund transformation

The exponential

Buµ(F )

Bu−µ(G )

expu(:λ:F ) := ∂∂v

Bv−λ(G )|v=u

Bv−λ(G )

F = Bu−λ(G ) G = Bu

λ(F )

A family of CR-preserving maps, initial condition u, “vertical”parameter λ. Induces a linear map between the tangent spaces. Itskernel: discrete exponential exp(:λ:F ). Form a basis

Discrete Riemann Surfaces

Backlund transformation

Solitons

The vertical equation is

(fλ(y)− fλ(x)) (f (y)− f (x))

(fλ(y)− f (y)) (fλ(x)− f (x))=

(y − x)2

λ2

x ′

x ′λ

y ′λ

x

y

y ′

λ

With the change of variables g = ln f , the continuous limit(y = x + ε) is:

√g ′λ × g ′ =

2

λsinh

gλ − g

2.

Discrete Riemann Surfaces

Backlund transformation

Isomonodromic solutions, moving frame

The Backlund transformation allows to define a notion of discreteholomorphy in Zd , for d > 1 finite, equipped with rapidities(αi )1≤i≤d .

q =α2

i

α2j

ρ =αi+αj

αi−αj

f (x + ei + ej) = Li(x + ej)f (x + ej), Li(x + ej) ∈ PGL2(C)

(a bc d

)z = az+b

cz+d

xx x + ei

x + ei + ejx + ej αi

αj αj

αi

Li (x ;λ) =

λ+ αi −2αi (f (x + ei ) + f (x))

0 λ− αi

The moving frame Ψ(·, λ) : Zd → GL2(C)[λ] for a prescribedΨ(0;λ):

Ψ(x + ei ;λ) = Li (x ;λ)Ψ(x ;λ).

Discrete Riemann Surfaces

Backlund transformation

Isomonodromic solutions, moving frame

Define A(·;λ) : Zd → GL2(C)[λ] by A(x ;λ) =dΨ(x ;λ)

dλΨ−1(x ;λ).

They satisfy the recurrent relation

A(x + ek ;λ) =dLk(x ;λ)

dλL−1

k (x ;λ) + Lk(x ;λ)A(x ;λ)L−1k (x ;λ).

A discrete holomorphic function f : Zd → C is calledisomonodromic, if, for some choice of A(0;λ), the matricesA(x ;λ) are meromorphic in λ, with poles whose positions andorders do not depend on x ∈ Zd . Isomonodromic solutions can beconstructed with prescribed boundary conditions. Example: theGreen function.

Discrete Riemann Surfaces

Inter2Geo eContent+ European project

Inter2GeoInteroperable Interactive GeometryA common file format and a common API for all interactivegeometry software

I Cabri

I Cinderella

I Geoplan/Geospace

I Geogebra

I Geonext

I TracEnPoche (Sesamath/MathEnPoche)

I Z.u.L C.a.R

I Kig, DrGeo, GeoProof (Coq geometric prover)

I · · ·