Dr Stuart Mackenzie - Mackenzie Research Laboratory at the...

Post on 08-Feb-2018

217 views 0 download

transcript

Atomic and Molecular S

Atomic and Molecular SSpectroscopySpectroscopy

Dr Stuart MackenzieDr Stuart Mackenzie

Atomic StructureQuantum theoryatoms / molecules

kinetics

thermodynamics

Atomic & MolecularStatistical

Quantum Mechanics

Rate Atomic & Molecular Spectroscopy

Statistical mechanics

Valence

Rate processes

PhotochemistryReaction Dynamics

Lasers NMRSolids &surfaces ynamics

ResourcesResources

Handouts (colour online)

Tutorialsuto a s

Books:Modern Spectroscopy (4th ed. 2004) JM HollasHigh Resolution Spectroscopy (2nd ed., 1998) JM HollasMolecular Spectroscopy (OUP Primer) JM BrownSpectra of Atoms and Molecules (2nd ed 2005) BernathSpectra of Atoms and Molecules (2nd ed. 2005) BernathFundamentals of Molecular Spectroscopy (4th ed. 1994) Banwell & McCashAtomic Spectra (OUP Primer) TP SoftleyMolecular Quantum Mechanics (4th ed.) Atkins and FriedmanElectronic and Photoelectron Spectroscopy, Ellis, Feher and Wright

P i lPracticals:II‐03 HCl, DCl spectra II‐04 Fluorescence and quenchingII‐05 I2 visible spectrum II‐08 Flame atomic absorption2 p pII‐10 Na/Na+ atomic spec II‐17 Computational RamanII‐18 N2

+ spectrum

Lecture 1: General Aspects of SpectroscopyLecture 1: General Aspects of Spectroscopy

Transverse wave of perpendicular sinusoidally

1.1 Electromagnetic radiation1.1 Electromagnetic radiation

Transverse wave of perpendicular, sinusoidallyoscillating electric and magnetic fields 

( )E E i k t φ

with wavevector, k = 2π/λand angular frequency ω 2πν

( )0E E sin kx tω φ= − +B

and angular frequency, ω = 2πνCharacterised by:

wavelength, λ (in m) or  A plane electromagnetic frequency, ν (in Hz) 

Speed in vacuo defined as cvac = 299 792 458 ms‐1

c = νλ = ω/k

wave propagating in the z‐direction 

c = νλ = ω/kcvac is related to the permittivity (electric constant) and permeability (magnetic constant) of free space: 2 1

=c(proof comes from Maxwell’s Equations) 00εμ

It ill ll b i t t id li ht t f t

1.2 Quantised Light: Photons1.2 Quantised Light: Photons

It will usually be convenient to consider light as a stream of zero rest mass particles or packages of radiation called photons with the following properties:

Energy, E= hνin which h is Planck’s constant, h = 6.626 x 10‐34 Js

Max Planck (1855‐1947)

Linearmomentum p = E/c = hν/c = h/λ (de Broglie)Linear momentum, p = E/c = hν/c = h/λ (de Broglie)

Louis de Broglie(1892‐1987)

(spin) Angularmomentum equivalent to a quantum number of 1:

j ph1       2ph i .e .,= =j

(1892 1987)

n.b.,  1) photons are Bosons (i.e., obey Bose‐Einstein statistics)

2) photons have helicity (projection of angular momentum on the

j  phph ,j

2) photons have helicity (projection of angular momentum on the direction of travel) of ±1 only (i.e., not 0)

Å

1.3 Quantities and Units 1.3 Quantities and Units 

Wavelength, λ: SI unit = m [or μm, nm or Angström, 1 Å = 10‐10 m]

λ is dependent on the (refractive index of the) medium in which the wave travels

Frequency, ν: SI unit = Hz (i.e., cycles s‐1)  [or MHz = 106 Hz , GHz  = 109 Hz]frequency is independent of the medium

Energy, E: SI unit = J,

BUT : It is hard to measure energy directly. Spectra are recorded as line intensities f ti f f l thas a function of frequency or wavelength.

The conversion to energy appears simple: E = hν = hc/λBut h is only known to 8 significant figures. Hence, it is convenient to introduce

1Wavenumber, a property defined as reciprocal of the vacuum wavelength:   1vac

νλ

=and whose units are universally quoted as cm‐1 (n.b. not m‐1)

Wavenumber is directly proportional to energy,  and thus we commonly quote “energies” in units of cm‐1.

ν=E hc

The total energy of a molecular system comprises:

1.4 Energy levels: The Born Oppenheimer Approximation1.4 Energy levels: The Born Oppenheimer Approximation

The translation of the whole molecule, TtransKinetic  energy ,Te and Tn of electrons and nuclei, respectively

(n.b. we’ll neglect this as trivial)

e” 

r 2

Potential energy, Vee and Vnn of electrons and nuclei, respectively

Potential energy between nuclei and electrons, Vne

“Valen

ces HT yea

n ne e ee netot nn= + +++= +

The Born Oppenheimer Approximation (Annal. Phys., 84, 457 (1927))

See 

note

The orn Oppenheimer Approximation (Annal. Phys., 84, 457 ( 9 7))Due to the difference in mass between the electron and nuclei, the motion of the two may be separated and the total molecular wavefunction, Ψtot, may, to a good approximation be writtenapproximation, be written

( ) ( )tot el nq ,Q Qψ ψ ψ=

nuclear coordinateselectron coordinates

Etot = Eel + Enucand the resulting total energy is a simple sum

It will be convenient, though less rigorous, to further factorise ψn further into vibrational and rotational parts so  ψtot = ψelψvibψrot and Etot= Eel + Evib+ Erot

Molecular l

Molecular lEnergy LevelsEnergy Levels

i.e., typically ΔEel >> ΔEvib >> ΔErot

Different electronic states (electronic arrangements(electronic arrangements,configurations or terms)

λΔ ≈

≈E 2 x 104 – 105 cm‐1

500 – 100 nm

102 – 5 x 103 cm‐1

100 μm – 2 μm

3 – 300 GHz (0.1 – 10 cm‐1)

Transitions at λVis – UV 

00 μ μinfrared

10 cm – 1 mmmicrowave

1.5 The Population of Energy levels1.5 The Population of Energy levels

The Boltzmann Law

⎛ ⎞E

At thermal equilibrium, the population of the i thenergy level is given by:

ΔE

ni EiThe Boltzmann Law

⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠

ii i

ENn g expq kT

ΔE

n0 E=0

Where:

⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠∑ i

ilevels ,i

Eq g exp

kTWhere:q is the molecular partition function (see HT Stat. Mech. notes)gi is the degeneracy of the i th level (the no. states with same energy)E is the energy of the i th levelEi is the energy of the i th levelk is the Boltzmann constant ( = R/NA= 1.381 x 10‐23 J K‐1) T is the Kelvin temperature

Hence relative to n :⎛ ⎞−Δ⎜ ⎟i in g Eexp

Ludwig Boltzmann  1844‐1906

Hence, relative to n0: = ⎜ ⎟⎝ ⎠

i i expn g kT0 0

Consider the ways in which a single photon might interact with a system of two

1.6 The Interaction of Light and Matter I: A simple classical picture1.6 The Interaction of Light and Matter I: A simple classical picture

Consider the ways in which a single photon might interact with a system of two energy levels E1 and E2, with populations n1 and n2, respectively:

i l d b i h *

E2 n2

A. Stimulated absorption,  M + hν→ M*

The photon is lost

E1 n1

The system absorbs energy E = hν = E2‐E1

1 1rate of absorptiondn dn

E n B E nρ ρ∝ ⇒E1 n1 1 121 1 12 21 1rate of absorption       E n B E n

dt dtρ ρ= ∝ ⇒ = −

In which B12 is the Einstein Coefficient of Absorption and ρ(E21)  is the radiation energy density (energy of radiation field m‐3) at energy E21, which, for a black‐body at temperature T, is given by Planck’s Law y p , g y

( )3

3

8 1radiation density,    hEc E

π νρ =⎛ ⎞

1c Eexp

kT⎛ ⎞

−⎜ ⎟⎝ ⎠

E n

B. Stimulated emission M* + hν → M + 2hν

Additional photon created with same frequencyE2 n2 Additional photon created with same frequency, polarization, direction and phase as the originalThe system relaxes, i.e., emits energy

E1 n1

2 221 2 21 21 2rate of stimulated emission       

dn dnE n B E n

d dρ ρ= ∝ ⇒ = −

in which B21 is the Einstein coefficient of stimulated emission.

21 2 21 21 2dt dtρ ρ

Einstein showed that for a system to reach equilibrium a 3rd process must occur:

E2 n2

C. Spontaneous emission M* → M + hν

A photon is created with E = E2 – E1 = hνTh t l i it

= ∝ ⇒ = −dn dn

n An2 22 2rate of spontaneous emissionE1 n1

The system relaxes, i.e., emits energy

and A is the Einstein coefficient of spontaneous emission (or “Einstein A coefficient”)

⇒n Andt dt2 2rate of spontaneous emission       1

1.7 The Einstein Coefficients  [A. Einstein, Z. Phys.,18, 121 (1917)]1.7 The Einstein Coefficients  [A. Einstein, Z. Phys.,18, 121 (1917)]

spont. stim

At equilibrium: ( ) ( )112 21 1 21 2 21 21 2  0,         

dni .e., B E n A n B E n

dtρ ρ= = +absn

spont.emission

stim.emission

( ) ( ){ }21 2 21

211 21

12 1 21 2g E

A n AE

B n B n B exp Bρ = =

− −Rearranging, 

( ){ }12 1 21 2 12 212g kTB exp B

( )3

21 3

8 1    hE π νρ =⎛ ⎞

c.f. Planck’s Law ( )21 3

21 1c Eexp

kT

ρ⎛ ⎞

−⎜ ⎟⎜ ⎟⎝ ⎠

f

3

1 12 2 21 21 213

8and  A hg B g B Bc

π ν= =Yielding:

There is only one independent Einstein coefficient

What are the implications of the fact that the A‐coefficient, A ∝ ν3?

1.8 Interactions of Light and Matter II: A time‐dependent treatment1.8 Interactions of Light and Matter II: A time‐dependent treatment

E2 n2E2 n2We will often use pictures like to consider transitions.

E1 n1Indeed our approach will be

i) to determine the eigenstates (stationary states) of a system      and then ii) consider allowed transitions between these states

i.e., the photon doesn’t expicitly figure

The total wavefunction, Ψtot , satisfies the time‐dependent Schrödinger equation:

0 0   where       and   ˆ ˆ ˆH i H H V t V t E cos ttψψ μ ω∂

= = + = −∂

Eigenstates are the solutions of the t‐independent Schrödinger eqn:   00 n n nH Eφ φ=

and the full (t‐dep) wavefunction is { }on nexp iE t /φ −

Ψ tot is a linear combination of stationary states { }on n n

n

c t exp iE t /ψ φ= −∑

Time-dependent coefficients

Aft i l ti ( MQM Ch 6) i t th t f t iti t t tAfter some manipulation (see MQM, Ch 6), we arrive at the rate of transition to state m from a well‐defined, i.e., pure, initial state, j, to be:

( ) ( )0 0 0 0⎧ ⎫( ) ( )0 0 0 0

0

2m j m jm

m j

i E E t i E E tEdc t ˆexp exp ddt i

ω ωφ μφ τ∗

⎧ ⎫− + − −⎪ ⎪= +⎨ ⎬⎪ ⎪⎩ ⎭

∫⎩ ⎭

1 2 3

Thus, for non‐zero transition probability (i.e., allowed transitions): 

1 0 there must be non zero radiation intensity andE ≠00 0

1.     0  there must be non‐zero radiation intensity,   2.         , energy must be conserved,      

3 0 The " " must be non‐ztransition dip erol

a

e mo oment

ndandm j

EE E i .e .

ˆ dω

φ μφ τ∗

≠− = ±

≠∫3.     0  The   must be non‐ztransition dip erole mo o mentm jdφ μφ τ ≠∫

1.9 The Transition Dipole Moment, R211.9 The Transition Dipole Moment, R21

∫The transition dipole moment, TDM, is defined as21 2 1 2 1

* ˆ ˆR dψ μψ τ ψ μ ψ= = ⟨ ⟩∫

∑ P f h lwhere the dipole moment operator,  i ii

ˆˆ q rμ = ∑Charge on i th particle

Position vector of ith particle

Charge on i th particle

μ operates upon our initial wavefunction ψ1 producing a new state 1ˆψ μ ψ= ⟩

TDM, R21, thus represents the transition amplitude of ending up in our particular state, ψ2 , determined by the overlap integral of ψ2 with ψ : ˆ, ψ2 , y p g ψ2 ψ

2 2 1ˆψ ψ ψ μ ψ⟨ ⟩ = ⟨ ⟩

The rate of transition (or intensity) is the square of this amplitude:

( )22 2t iti i t it * ˆ ˆi R d ⟨ ⟩∫( )2 22 1 2 121

transition intensity   i .e ., R dψ μψ τ ψ μ ψ∝ = = ⟨ ⟩∫

The TDM is, unsurprisingly, closely related to the Einstein B coefficient (after all they both describe the same thing): 3

2 28 1π

( )2 2

21 21 212200

8 164 3

B R Rh

πεπε

= =

1.10 The Transition Dipole Moment and spectroscopic selection rules1.10 The Transition Dipole Moment and spectroscopic selection rules

( )22 22 1 2 121

*ψ μψ τ ψ μ ψ∝ = = ⟨ ⟩∫The TDM is thus the ultimate source of spectroscopic selection rules for “dipoleallowed transitions”allowed transitions .

i.e., of all the conceivable energetically allowed transitions it determines whichactually occur and encompasses symmetry and angular momentum constraints.

Forbidden transitions have R21 = 0Allowed transitions have R21 ≠ 0Allowed transitions have R21 ≠ 0