Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC...

Post on 21-Jul-2020

2 views 0 download

transcript

GeoscienceBCReport2013‐151

DriftProspectingforPorphyryCopper‐Gold,VolcanogenicMassiveSulphideMineralizationandPreciousandBaseMetalVeinswithinthe

QUESTProjectArea,CentralBritishColumbia(NTS093J)

BrentC.Ward,MatthewI.Leybourne,DavidA.Sacco,RaymondE.Lett,LambertusC.Struik

GeoscienceBCReport2013‐152

INTRODUCTION.............................................................................................................................................3

Locationandphysiography.......................................................................................................................5

Bedrockgeology............................................................................................................................................5MineralOccurrences...............................................................................................................................................8RegionalQuaternaryGeology............................................................................................................................10

Methods.........................................................................................................................................................12Geochemistry...........................................................................................................................................................12HeavyMinerals........................................................................................................................................................13

QUALITYCONTROL...................................................................................................................................13

Results...........................................................................................................................................................14Au,As,AgandHginTill........................................................................................................................................17Cu,MoandSbinTill..............................................................................................................................................39Pb,Bi,ZnandCdinTill.........................................................................................................................................50RareEarthElements,U,Th,K,Ca,Mg,Na,Cr,Hf,Co,MnandNiinTill...............................................51HeavyMineralConcentrates:visiblegold,pyriteandcinnabar...........................................................51

TillGeochemicalExploration................................................................................................................52Preciousandbasemetalveins..........................................................................................................................52PorphyryCu‐Au.......................................................................................................................................................52VolcanogenicMassiveSulphideDeposits......................................................................................................53Mercury......................................................................................................................................................................54

HEAVYMINERALCONCENTRATEGEOCHEMISTRY........................................................................54

Conclusions..................................................................................................................................................54

Acknowledgments.....................................................................................................................................55

REFERENCES................................................................................................................................................56

GeoscienceBCReport2013‐153

DriftProspectingforPorphyryCopper‐Gold,VolcanogenicMassiveSulphideMineralizationandPreciousandBaseMetalVeinswithintheQUESTProjectArea,

CentralBritishColumbia(NTS093J)

BrentC.Ward1,MatthewI.Leybourne2,DavidA.Sacco1,RaymondE.Lett3,LambertusC.Struik4

1DepartmentofEarthSciences,SimonFraserUniversity,Burnaby,BCV5A1S6;bcward@sfu.ca2ALSGeochemistry,2103DollartonHwy,NorthVancouver,BCV7H0A73BCGeologicalSurveyEmeritus3956AshfordRd,Victoria,BCV8P3S5

4GeologicalSurveyofCanada,NaturalResourcesCanada,1500‐605RobsonStreet,Vancouver,BCV6B5J3

INTRODUCTION ThisreportsummarizestheresultsofregionaltillgeochemicalandmineralogicalsurveysandQuaternarystudiesconductedintheheartoftheQUESTProjectarea(GeoscienceBC’sprogramtoattractnewexplorationinanunder‐exploredportionofcentralBritishColumbia,initiatedin2007;http://www.geosciencebc.com/s/Quest.asp)(Figure1).TheQUESTProjectareahasgoodpotentialforCu‐Auporphyryandvolcanogenicmassivesulphide(VMS)mineralization,butmineralexplorationactivityhasbeenhinderedinsomeareasduetothethickcoverofsurficialdeposits.Regional‐scaletillsamplingfollowedbydetailedsurveysaroundsampleswithelevatedoranomalousvalueswascarriedouttoassessmineralpotentialofthisarea.Tillisthepreferredsamplingmediumforgeochemicalandmineralogicalsurveysinglaciatedterrainbecauseitiscommonlyconsideredafirstderivativeofbedrock(Dreimanis,1989;Levson,2001).Thismethodologyhasbeenshowntoaidinidentifyingpotentiallymineralizedbedrockunitsinareascoveredwiththickglacialdeposits(Levson,2001;McClenaghanetal.,2002;McClenaghan,2005).TheQuaternarygeology,specificallythedistributionofsurficialdepositsandtheice‐flowhistory,includingthedominanttransportdirection,wereusedtoplanthesurveysanddeterminethetransporthistoryoftillgeochemicalandmineralogicaldata.Theprimarygoalofthisstudyistouseregional‐scalemajor‐,minor‐andtrace‐elementtillgeochemicaldata,goldgraincountsandheavymineralseparationandidentificationtoidentifymineralizedbedrock.Thegeochemicalandmineralogicaldatapresentedherehighlightnewexplorationtargetsand,incombinationwiththearea’sglacialhistory,provideasurficialgeologicalcontextforcompaniestointerprettheirowngeochemicalandbedrockgeologydatasets.

GeoscienceBCReport2013‐154

GeoscienceBCReport2013‐155

LOCATIONANDPHYSIOGRAPHYThestudyarea,locatedinwest‐centralBritishColumbia,comprisessix,1:50000‐scalemapsheets(NTS093J/05,06,11,12,13,and14;Figure1).Highway97,whichlinksPrinceGeorgetoFortSt.John,runsalongsidetheeastsideofthestudyareaandHighway16,whichlinksPrinceGeorgetoFortSt.James,runstothesouth.AmoderatelydensenetworkofForestServiceroadsprovidesaccesstomostpartsofthestudyareaforfieldworkbasedoutofPrinceGeorge,FortSt.James,McLeodLakeandMackenzie.ThemajorityofthestudyarealiesintherelativelylowreliefoftheInteriorPlateau(Holland,1976;Mathews,1986),includingitssubdivisions,theNechakoPlainandtheFraserBasin.Theseareasarecharacterizedbydrumlinizedtill,glaciofluvialoutwashandeskerdepositswithglaciolacustrinedepositsoccurringinthesouthernregions.ThenorthwesternpartofthestudyareaoccurswithintheNechakoPlateauandischaracterizedbytillmantlesandexposedbedrock.

BEDROCK GEOLOGY ThestudyareastraddlesfouroftheterranesthatmakeuptheCanadianCordillera(CacheCreek,SlideMountain,Quesnel,Kootenay)whilethemostnortheasterncornerofitextendsintotheRockyMountainAssemblage(Figure2).AcomplexassemblageofintrusiveandextrusiverocksoftheSlideMountainterraneoccursintheeast.TheCacheCreekterraneisrepresentedbyPennsylvanianandPermianlimestoneinthesouthwesternportionofthestudyarea,withbasaltsoccurringjusttothesouth.TheRockyMountainassemblageinthenortheasterncornerofthestudyareacomprisesSiluriantoDevoniansandstoneandquartzite.TheQuesnelterranedominatesthestudyareaandiscomposedprimarilyofLateTriassictoEarlyJurassicarcvolcanicrocksoftheWitchLakesuccessionandvolcaniclasticrocksoftheCottonwoodRiversuccession,bothpartoftheNicolaGroup(Loganetal.,2010).TheNicolaGroupwaspreviouslyreferredtoastheTaklaGroup(Struik,1994),followingfirstusage.ItwascorrelatedwithTaklaGrouprockstothewestwithintheStikineterrane.TheNicolaGroupcomprises:a)mainlybasaltictodaciticvolcaniclasticrocksandsubordinatecoherentvolcanicrocks,eachwithaugite‐porphyrytextures(particularlycharacteristicoftheQuesnelterrane),whichformaneasternfaciesofalkalinetosubalkalineaugite‐phyricbasalticandesite;b)coevalandpartlycomagmaticplutonsrangingfromcalcalkaline(inthewest)toalkaline(intheeast);andc)sedimentaryrocks,includingshale,limestoneandepiclasticdeposits.StratigraphicallyoverlyingtheseterranesareaseriesofoverlapassemblagesrangingfromUpperCretaceoustoMiocenesedimentaryrocksandCretaceoustoPliocenevolcanicrocks.ThelatterincludesthedominantlyMioceneChilcotinbasaltsandEocenefelsicvolcanicrocks.Intrusiverocks,paragneissandmetasedimentaryrocksoftheWolverinemetamorphiccomplexwereexposedduringEoceneextension.ThemetamorphismandplutonismoccurredinthelateCretaceousandPaleogene,andtheprotolithfortheparagneissand

GeoscienceBCReport2013‐156

metasedimentaryrocksarelikelyPrecambrianandEarlyPaleozoic(Struik,1994).RecentcompilationhasassignedtheserockstotheKootenayterrane(Loganetal.,2010).

GeoscienceBCReport2013‐157

GeoscienceBCReport2013‐158

Mineral Occurrences 

WithinthestudyareaaretwelveCushowings,sixAushowings,oneplatinumgroupelements(PGE)showing,twoHgshowingsandtwopast‐producingAuandPtdeposits(MINFILE;BCGeologicalSurvey,2010;Figure2).ThetwopastproducersaretheMcDougallRiverandMcLeodRiverplacerdeposits(MINFILE093J007and012;BCGeologicalSurvey,2010).Bothdepositsoccurinthenortheasternpartofthestudyarea,underlainprimarilybytheMississippianSlideMountainGroup.CaribooNorthernDevelopmentCo.Ltd.andNorthernReefGoldMinesLtd.workedtheMcDougallRiverplacergolddepositfromaround1931to1935,withtotalreportedproductionofapproximately1750gAu(62oz).From1981topresent,theareahasreceivedrenewedinterest,includingheavymineral,soil,siltandrocksampling;geologicalmapping;airborneverylowfrequency(VLF)andmagnetometersurveys;andgroundVLFandmagnetometersurveysbyavarietyofcompanies.AtMcDougallRiver,AuandPtwereextractedfromshallowgraveldepositsonbothbanksoftheriver,withadditionalclastsretrievedfromcracksandcrevicesinthebedrock.LocallyshearedrocksandquartzveinsmaybethesourceoftheplacerAuandPGE.HeavymineralsampleshaveyieldedhighAuandAgcontents,andmanyoftheplacerGoldgrainsrecoveredareangulartowiry,consistentwithminimaltransportfromalocalbedrocksource.Thecoincidentelectromagnetic(EM)andmagneticanomaliescouldrepresentthelocalsourceforAu.ThetwoHgshowings(MountPrinceSoutheastandNorthwest,MINFILE093J010,093J011)inthesouthwesternpartofthestudyareaareassociatedwiththePinchifault.Bothshowingsarecharacterizedbysmallvolumesofcinnabarhostedbycarbonate‐alteredandshearedNicolaGroupmaficvolcanicrocks,commonlyassociatedwithquartzstringers.Mostoftheothermineralshowingsinthestudyareaaresmallwithminimalassociatedexplorationactivity.MountMilligan(MINFILE093N194)isaCu‐AuporphyrydevelopedprospecttothenorthwestofthestudyareainQuesnelterrane.Inthisarea,TriassictoLowerJurassicvolcanicandsubordinatesedimentaryrocksofNicolaGroupareinterpretedtobetheextrusivephaseoftheHogemintrusivesuite.ManyCu‐AumineralshowingsareassociatedwiththeHogembatholithandsmallercoevalintrusions(LeFortetal.,2011).TheNicolaGroupintheMountMilliganareaisinformallysubdividedintoalower,predominantlysedimentaryInzanaLakesuccession,andanupper,predominantlyvolcaniclastic,WitchLakesuccession.TheWitchLakesuccessionhoststheMountMilligandepositandischaracterizedbyaugite‐phyricvolcaniclasticandcoherentbasalticandesite,withsubordinateepiclasticbeds.RegionalmappingandpetrographicstudiesintheMountMilliganareaindicatethattheWitchLakebasalticandesiteandassociatedsedimentaryrockshavebeensubjectedtostrongpotassicalterationdetectableforupto4kmfromthedeposit.WitchLakesuccessionvolcanicrockswereintrudedbysyn‐andpost‐depositionalgabbro,diorite,granodiorite,monzoniteandsyenite(Loganetal.,2010).RecentworkhasshownthatmineralizationatMountMilligan

GeoscienceBCReport2013‐159

isdominatedbyanearlyCu‐richporphyrystage,withlatermineralizationcharacterizedbyenrichmentsinAu,PGE,As,Sb,Bi,TeandB(LeFortetal.,2011).

GeoscienceBCReport2013‐1510

Regional Quaternary Geology 

TheCordilleranIceSheethasrepeatedlycoveredBritishColumbiaandportionsofYukon,AlaskaandWashingtonoverthelasttwomillionyears(Armstrongetal.,1965;Clague,1989).Atitsmaximumextent,theCordilleranIceSheetwasupto900kmwideandupto2000–3000mthickovertheInteriorPlateau,closelyresemblingthepresent‐dayGreenlandIceSheet(Clague,1989).AmorecomprehensivehistoryoftheCordilleranIceSheetcanbefoundinJacksonandClague(1991)andClagueandWard(2011).ThemajorsourcesofregionalicethatcoveredcentralBritishColumbiaadvancedfromaccumulationcentresintheCoast,Skeena,OmenicaandCariboomountains(Tipper,1971a,b;LevsonandGiles,1997;Plouffe,1997,2000,Wardetal,2009).Thestudyareaoccursneartheconvergenceofthesethreeadvancingicefronts,makingitdifficulttodeterminewhichicecentre(s)hadthemostinfluenceoniceflowdirectionanddispersalintheearlypartsoftheLateWisconsinan.Previouslyreportedice‐flowindicators(Tipper,1971a;PaulenandBobrowsky,2003),incombinationwithdatafromthisstudy,suggestthatitwasmainlyicefromtheCoastMountainstothewestandtheCoastandCariboomountainstothesouththataffectedthearea.Absolutechronologicalinformationonthemovementand/orconfluenceoficefrontsthroughthestudyareaislimited.AlthoughitisknownthaticewasadvancingoutoftheCoastMountainsby28.8ka(GSC‐95,Clague,1989),itisnotclearwhenthisadvancereachedthecentralInteriorPlateau.Ice,possiblysourcedfromtheCaribooMountains(PaulenandBobrowsky,2003),coveredtheBowronValleysometimeafter19.9ka(AA44045,Wardetal.,2008).AccordingtoBobrowskyandRutter(1992),iceadvancingfromtheOminecaMountainsintowhatisnowthenortharmofWillistonLakeoccurredsometimeafter15180±100BP(TO‐708).Thedominanticeflowinthestudyareaisrelativelyeasytodemonstrateusingtheorientationsofthenumerousmacro‐forms.Themacro‐formswereinitiallycompiledfromexistingmaps(Tipper1971)andtheresolutionwasincreasedwithobservationsmadeduringmappingforthisproject(Figure3).Thedominanticeflowindicatorsgenerallyconsistofdrumlins,flutings,cragandtails,andstreamlinedbedrock(Figure3).Theinteractionofthetwosourcesresultedinageneralnortheasterntransportdirectionwithminorvariationacrossthe6sheets;thelargestreamlinedformsareapproximatelyENEinthesouthwestportionofthestudyareaandcurvenorthward,beingNNEinthenorthofthestudyarea.Small‐scaleiceflowindicatorsweremeasuredinthefieldsuchasgrooves,striationsandrat‐tails.Thesemicro‐flowindicatorsweremeasuredatatotalof22sites(Figure3).Atsomeofthesesites,multipleiceflowdirectionswererecorded,atothersonlyonedominantdirectionwasobserved.Findingmicro‐flowindicators(e.g.,striations,rat‐tails)waschallengingduetothelackofbedrockexposuresinpartsofthefieldarea,andtheweatherednatureofsomeoftheoutcropspresent.Inmostcases,exceptforsomefreshroadcuts,micro‐flowindicatorswereonlyfoundaftersediment,usuallytill,wasscraped,brushedorwashedoffbedrocksurfaces.

GeoscienceBCReport2013‐1511

GeoscienceBCReport2013‐1512

Theorientationofelongateclastsintillweremeasuredat12sites.Thesetillfabricscanbeusedtointerpretthegenesisofatillunitandthedirectionoficeflowthatdepositedit.FabricsandstriationswereusedtoadddetailandarelativechronologytotheiceflowhistorythatisdescribedinSaccoetal.(2012).

METHODS

Geochemistry 

Basaltillsampleswerecollectedatapproximately760siteswithinthestudyarea,duringthesummersof2008,2009,and2010.Thereareslightlydifferentnumbersofsamplesforthedifferentsizefractionsanalyzedowingtoasmallnumberoflostormislabeledsamples(seeAppendices).Basaltillinthestudyareaistypicallyadense,darkgrey,sandytoclayeysiltmatrixsupporteddiamictoncontaining25‐40%gravelsizedmaterial(clasts).Theaveragesampledensityisapproximately1sampleper8km2,buttherearesomezoneswithnosamplesandsomezoneswithhigherdensity.Insomeareassamplingwasnotpossiblebecauseofaccessproblems,roaddeactivationandlackofroads,orlackofsuitablesamplemedia,suchasareasofeolian,glaciofluvialandglaciolacustrinedeposits.Inaddition,nosamplingoccurredinCarpLakeProvincialPark.Ateachsamplesitethreeseparate~900gsampleswerecollectedfor:1)analysisoftheclay‐sizefraction(<0.002mm)byinductivelycoupledplasmamassspectrometry(ICP‐MS),followinganaquaregiadigestion,atAcmeAnalyticalLaboratoriesLtd.(Vancouver,BC);2)analysisofthesilt‐plusclay‐sizedfraction(<0.063mm)byinstrumentalneutronactivationanalysis(INAA)atActivationLaboratoriesInc.(Ancaster,ON);and3)forarchiveattheGeologicalSurveyofCanada.Thesearchivesampleswillbeavailableforfutureanalysisforeitherimproveddetectionlimitsordifferentelements.Clay‐sizedseparationswereproducedbycentrifugeatAcmeAnalyticalLaboratoriesLtd.(Vancouver,BC).Typically,between0.5–0.8kgoftillwereprocessed,whichonaverageyieldedapproximately5gofclay.TheclaysplitswereanalyzedbyICP‐MSfor36elements(analyticalpackage1DX)followingleachinginahot(95°C)aqua‐regiadigestion(detectionlimitsarelistedintheappendixeswiththedata).Upto5gofclayisanalyzedtoovercomepotentialnuggeteffectsforAu.Thesiltplusclay‐sizedfraction(<0.063mm)oftillsamples(onaverage,24gofmaterialwasused)wereanalyzedfor35elementsbyINAA(analyticalpackage1D,enhancedoption)(detectionlimitsarelistedintheappendixeswiththedata).Hoffman(1992)describestheanalyticalprocedureasfollows.Analiquotandaninternalstandard(oneforeveryelevensamples)areirradiatedwithfluxwiresatathermalneutronfluxof7x1012·n·cm‐2·s‐1.Afteraseven‐daydecay,thesamplesarecountedonahighpurityGedetector.Usingthefluxwires,thedecay‐correctedactivitiesarecomparedtoastandardcalibrationcurve.Thestandardincludedisonlyacheckonaccuracyandisnotusedforcalibrationpurposes.From10–30%ofthesamplesarerecheckedbyre‐measurement.

GeoscienceBCReport2013‐1513

Heavy Minerals 

Bulktillsamples(>10kg)werecollectedatevery4–5sitessampledforgeochemicalanalysis.Intotal,152sampleswerecollected.Heavymineralconcentrates(HMCs)wereseparatedatOverburdenDrillingManagementLimited(Nepean,ON)andwerepannedforgoldgrains,platinumgroupmetals(PGM)anduraninite.Bulksamplesweredisaggregated,followedbyseparationofthe>2mmand<2mmfractions.The<2mmfractionwasthenpreconcentratedonashakingtable,withthefinest,heaviestfractionbeingpanned.Gold,uraninite,andplatinumgroupelements(PGEs)werethenexaminedunderopticalmicroscopetoprovidegraincountsaswellasgrainmorphology.MoredetaileddescriptionsofthemethodsareprovidedinAverill(2001).Sulfideandcinnabargraincountswerealsomade,althoughwheren>20,thesecountsareestimates.Thetableconcentratewasthensievedandthe<0.25mmfractionsubsequentlyseparatedusingheavyliquidat3.2g/cm3.This<0.25mmfractionwasthenanalyzedbyINAAatBecquerelLaboratories(Mississauga,ON)usingtheirBQ‐NAA‐1package(withtheadditionofHgfor2009and2010samples).Theconcentrateisplacedinvials,whicharestackedintoone‐foot(30cm)longbundlesforirradiationattheMcMasterNuclearReactor,whichhasfluxof8x1012·n·cm‐2·s‐1.Afteratypicaldecayperiodofsixdays,theirradiatedsamplesareloadedontoahighresolution,coaxialgermaniumdetectorthatconstructsaspectrumofgamma‐rayenergiesversusintensities.Thecountingtimeistwentytothirtyminutespersample.Quantitativeelementalcontentsarederivedbycomparisonofpeakpositionsandareawithlibrarystandards.Forthe2009and2010samples,severalelements,suchasHg,Ni,Zr,Rb,Au,hadvariableandhigherthanusualdetectionlimitsbecauseofelevatedCr,REEandThcontents(SteveSimpson,pers.comm.,2011).Forexample,Auusuallyhasadetectionlimitof2ppbbuthereitrangesfrom5to42ppbdependingonthesample.However,thesamplestakenin2008didnothavethisissue.

QUALITY CONTROL Discriminatinggeochemicaltrendscausedbygeologicalfeaturesfromvariationduetospurioussamplingoranalyticalerroriscriticalforassessingthereliabilityofregionalgeochemicalsurveydata.Acombinationoffieldduplicates,analyticalduplicatesandreferencestandardsareusedtoestimatetheaccuracyandprecisionoftheseanalyticaldata.Every20samplegroupsubmittedforcommercialanalysiscontainafieldduplicate,ananalyticalduplicate(splitandinsertedintothesamplesequenceatthelabafterpreparation),andareferencestandard(eitheranin‐houseBCGeologicalSurveystandardoracertifiedCanadaCentreforMineralandEnergyTechnology[CANMET]standard).Nofieldoranalyticalduplicatesweredonefortheheavymineralsamples,owingtothelargesamplesizesrequired.Scatter‐plotsoftheanalyticalandduplicatepairsweregeneratedandaselectionisshowninFigure4and5,withtherestoftheanalysisinAppendix1.Precisionfortheaquaregia(clayfraction)ICP‐MSanalysesistypicallymuchbetterthanfortheINAA(silt+clay)analyses.For

GeoscienceBCReport2013‐1514

theICP‐MSanalyses,correlationcoefficientsforthefieldduplicatesaretypicallyhigherthanthosefortheanalyticalduplicatesandaregenerallyabove+0.9.Morethan80percentofthetotalvariationamongtheduplicatesisaccountedforbytheFieldDuplicate1–FieldDuplicate2correlation.CorrelationcoefficientsfortheINAAduplicatesaregenerallymuchlower,withbetterprecisionforCo,Cr,ThandtheREEthantheotheranalytes.ThehigherprecisionfortheICP‐MSdataisinpartrelatedtolowerdetectionlimitsandlessvariationingrainsize,butalsolikelyreflectsbetterinstrumentcapabilities.FourCANMETtillstandards(TILL1,2,3and4),BCGeologicalSurveysediment(RD29)andtillstandards(SM,Till99),andtwoquartzblanksampleswereanalysedwiththesurveysamplestomeasureanalyticalaccuracyandprecision.AllofthestandardsdataiscompiledinAppendix1.TheINAAquartzblanksampleresultsrevealamountsofAs,Br,Co,Cr,La,Ce,ThandScinthe1to10ppmrangeandlessthan0.2%Fe.Traceamounts(<than1ppm)ofCu,Pb,Co,Mn,SrandBaintheblanksaredetectablebytheaquaregiadigestion‐ICP‐ESanalysis.Elementconcentrationsdetectedintheblanksamplesmayreflecttracesinthequartzandnotnecessarilysamplecontaminationduringtheanalysis.Precisionisbelow+/‐8%RSDforAs,Cd,Co,Cr,Cu,Hg,Mn,Mo,Ni,Pb,Sb,VandZninstandardsanalysedbyaquaregiaICP‐MSandbelow+/‐8%RSDforAs,Br,Co,Cr,Fe,La,Ce,ThandScinGSBTill99.Accuracycanbeaccessedfromthenear‐totalINAAanalysesandmeasuredamountsformostelementsarewithin5%oftherecommendedvalue.PrecisionandaccuracyforelementsatdifferentconcentrationisbestshownbytheCANMETstandardsdata(Appendix1).TheINAAanalysesofCANMET.Goldshowsconsiderablevariationalthoughthemeanandrecommendedvaluesareverysimilar.ThelargemeasuredBadifferencescomparedtotherecommendedvaluearedifficulttoexplain.Table2listsprecisionandCANMETrecommendedvalues(hotaquaregiaanalyses)forCANMETTill1,2,3and4.Goldprecision(%RSD)forthreeofthestandardsisbelow+/‐30%andmostotherelementshaveaprecisionbelow+/‐8%RSD.Lowerprecision(i.e.above8%)commonlyreflectsalowelementconcentrationsmeasuredinthestandard.

RESULTS Elementswiththemostsignificancetopotentialeconomicmineralizationintheprojectareaarediscussedbelow.Notethatweanalyzeddifferentsizefractionsbydifferentanalyticalmethods.Insomecases,commodityelementsarenotanalyzedbybothmethods(e.g.,CuwasnotdeterminedbyINAA).Furthermore,dependingonwhereanelementissequesteredinasample,comparisonsbetweensizefractionsmayhavegreaterorlesserutility,asdiscussedbelow.Notealsothataquaregiadigestionisnottotal,silicateandresistantoxidesarenotdigestedtoanygreatextent.Bycontrast,INAAisatotalmethod.Thus,thedifferencesbetweenresultsfortheclay‐sizeversusthesiltplusclay‐sizefractionsarenotonlyafunctionofanalyticalmethod(partialversustotal),butalsoafunctionofwhereananalyteresideswithina

GeoscienceBCReport2013‐1515

GeoscienceBCReport2013‐1516

GeoscienceBCReport2013‐1517

sample.Forexample,Asshowsgoodcorrelationsforbothfieldandlaboratoryduplicatesforbothsizefractions,becauseAsisprimarilyassociatedwithadsorptiontoclay‐sizemineralsurfaces(Figure4).Bycontrast,Auismorepronetothenuggeteffectinthesiltplusclay‐sizefractionthanAuintheclayfraction(Figure5).Tillgeochemicaldata(ICP‐MSandINAAanalysis)isinappendix2.Heavymineraldata(Graincounts,INAAanalysisontheheavymineralfraction)isinAppendix3.Averagevaluesarepresentedbelowalongwithonestandarddeviationandsamplecount.Samplecountsarevariableasresultsbelowdetectionarenotincludedinthestatisticalcalculations.Thresholdvalues(percentile)aresetbasedoninflexionpointsonthecumulativefrequencyplots(Figure6);wehavenotdefinedasetbackgroundvalueowingtothevariabilityinthegeochemicallandscape.Wherecorrelationsarestated(rvalues),theserepresentPearsonProductMomentcorrelations,statisticallysignificantatleastatthe95%confidenceinterval.Insomecases,wealsoemployedR‐modefactoranalysis,astatisticalmethodtoinvestigateinter‐relationshipsbetweenanalytesinacorrelationmatrix.

Au, As, Ag and Hg in Till  

Goldcontentsintheclayfractionrangefromlessthandetection(0.5ppb)to294ppb(average=5.1±11ppb,n=704).Goldcontentsintheclayfractionshowhighlyanomalousvaluesaroundthe98thpercentile(10ppb),althoughthereisalsoasubtlechangeinslopearoundthe90thpercentile,or8ppb(Figure6a).Inthesiltplusclay‐sizefraction,Aucontentsrangefrombelowdetection(2ppb)upto635ppb.Forthesiltplusclay‐sizefraction,anomalousAucontentsoccurabovethe80thpercentile(~8ppb;Figure6a);mostsamplesbelowthisthresholdwerebelowthedetectionlimitbythismethod(2ppb).AnomalousAucontentsoccurinthenortheasternandnorthwesternpartsofthemapareaforbothsizefractions(Figures7a,b),largelycoincidentwithknownAushowings.TherearealsoanomalousAucontents,inparticularinthesiltplusclay‐sizefraction,tothesouth,andtoalesserextent,totheeastofCarpLake.TherearenoknownAushowingshere.FortheclayfractionAushowsthebestcorrelationwithCu(r=0.410).ThehighestAucontentbybothmethodsoccursinthesamesample(Figures7aand7b)indicatingthatthisanomalousvalueisnottheresultofthenuggeteffect,consistentwiththisalsobeingthesamplewiththehighestAscontentsbybothmethods(Figures7cand7d).Alltillsamplesprocessedforheavyminerals(n=152)containvisiblegold(Figure8a).Notsurprisingly,thedistributionofAubyINAAontheheavymineralconcentratesmimicsthegoldgraindistribution(Figure8b)alongwiththesilt+clayfractionanalyzedbyINAA(Figure7b).FortheINAAanalysesoftheHMCs,goldrangesfrombelowdetection(5to42ppbdependingonthesample)to2,630ppb.Goldcontentsshowclearlyanomalousvaluesaroundthe95thpercentile(~750ppb),althoughthereisalsoasubtlechangeinslopearoundthe80thpercentile(~400ppb).

GeoscienceBCReport2013‐1518

GeoscienceBCReport2013‐1519

GeoscienceBCReport2013‐1520

ArsenicistypicallyconsideredapathfinderelementforAu.Inthisstudy,thresholdAscontentsintillare32and26ppm,atthe95thand98thpercentilesfortheclayandsiltplusclay‐sizefractions,respectively(Figure6a).Arseniccontentsareanomalousinboththenortheasternandnorthwesternsectionsofthestudyarea(Figures7c,d),largelycoincidentwithAuanomalies.However,AscontentsdonotappeartobeanomaloussouthofCarpLake;incontrast,thereareanomalousAscontentsinthewest‐centralpartofthestudyarea,primarilyinthesiltplusclay‐sizefraction.AuandAsshowamoderatepositivecorrelation(r=0.372)fortheclayfractionbasedontheR‐modefactoranalysis,statisticallysignificantatthe99.9%confidenceinterval.Bycontrast,thestatisticalcorrelationbetweenAsandAuforthesiltplusclay‐sizefractionispoor(r=0.112),despitetheevidentspatialassociation(Figures7b,d).Figure7(Next18pages):Proportionaldotmapsofselectedelementsfromtillgeochemicalanalyses,centralBritishColumbia:a)Aucontents(clay‐sizedfraction)byinductivelycoupledplasma–massspectrometry(ICP‐MS);b)Aucontents(clayplussilt–sizedfraction)byinstrumentalneutronactivationanalysis(INAA);c)Ascontents(clay‐sizedfraction)byICP‐MS;d)Ascontents(clayplussilt–sizedfraction)byINAA;e)Agcontents(clay‐sizedfraction)byICP‐MS;f)Hgcontents(clay‐sizedfraction)byICP‐MS;g)Cucontents(clay‐sizedfraction)byICP‐MS;h)Mocontents(clay‐sizedfraction)byICP‐MS;i)Sbcontents(clay‐sizedfraction)byICP‐MS;j)Pbcontents(clay‐sizedfraction)byICP‐MS;k)Bicontents(clay‐sizedfraction)byICP‐MS;l)Zncontents(clay‐sizedfraction)byICP‐MS;m)Cdcontents(clay‐sizedfraction)byICP‐MS;n)Lacontents(clayplussilt–sizedfraction)byINAA;o)Lacontents(clay‐sizedfraction)byICP‐MS;p)Crcontents(clay‐sizedfraction)byICP‐MS;q)Sbcontents(silt+claysizedfraction)byINAA;r)Thcontents(silt+claysizedfraction)byINAA.SizeofdotsareproportionaltothecontentwithAu‐ICPandAu‐INAAbeingrepresentedbylogplots.DataareoverlaidonthebedrockgeologymappresentedinFigure2.

GeoscienceBCReport2013‐1521

GeoscienceBCReport2013‐1522

GeoscienceBCReport2013‐1523

GeoscienceBCReport2013‐1524

GeoscienceBCReport2013‐1525

GeoscienceBCReport2013‐1526

GeoscienceBCReport2013‐1527

GeoscienceBCReport2013‐1528

GeoscienceBCReport2013‐1529

GeoscienceBCReport2013‐1530

GeoscienceBCReport2013‐1531

GeoscienceBCReport2013‐1532

GeoscienceBCReport2013‐1533

GeoscienceBCReport2013‐1534

GeoscienceBCReport2013‐1535

GeoscienceBCReport2013‐1536

GeoscienceBCReport2013‐1537

GeoscienceBCReport2013‐1538

GeoscienceBCReport2013‐1539

Arseniccontentsintheheavymineralfractionrangefrom9to414ppmandshowclearlyanomalousvaluesaroundthe95thpercentile(60ppb)(Figure6a).ThespatialdistributionofAscontentsmimicthoseofgoldandmostanomalousvaluesareinthenortheastpartofthestudyareawithslightlylowervaluesinthenorthwest(Figure8c).Silvercontentsfortheclayfractionrangefromlessthandetection(0.1ppm)to1.1ppm(average=0.21±0.14ppm,n=520),withanomalousvalues>0.5ppm(~95thpercentile;Figure6a).Silvershowsamoderatelypositive,statisticallysignificantcorrelation(r=0.313)withAu,withanomalousvaluesinthenortheasternandnorthwesternpartsofthestudyarea(Figure7e),beingcoincidentwiththeAuanomalies.Silverforthesiltplusclay‐sizefractionandtheheavymineralfractionwasbelowdetectionlimitforallsamples.Mercurywasonlydetectedintheclayfraction,althoughheavymineralconcentratedata(seebelow)indicatesmanysampleshavesignificantquantitiesofcinnabargrains.Intheclayfraction,Hgrangesfrom0.02to1.0ppm(average=0.29±0.13ppm).Inthecumulativefrequencyplottherearenomajorbreaksinslope,consistentwithaclosetonormaldistribution(Figure6a).Settingthethresholdatthe95thpercentile(0.51ppm),anomalousHgcontentsoccurinthewest‐centralportionofthestudyarea(Figure7f),northofthetwoknownHgshowings.SeveralanomalousHgcontentsoccurinthenortheasternandnorthwesternpartsofthestudyarea,coincidentwithAu,AsandAganomalies.Mercuryvaluesdonot,however,statisticallycorrelatewellwithAuvalues(r=0.083),butdostatisticallycorrelatemoderatelywithAsvalues(r=0.360).Cinnabarcountsrangefrom0to400grains.Anomalouscinnabargraincounts(>60grains)occurinthewesternpartofthestudyarea,andmarkthestartofatrendofdecreasingvaluestothesoutheast(Fig.8e).Becauseofthelargenumberofcinnabargrainsidentified,the2009and2010sampleswerealsoanalyzedforHgbyINAA;unfortunately,becauseofdetectionlimitissuesduetointerferencewithotherelements,only14sampleshavevaluesabovedetection.Thesesamplesareonthewestandeastsideofthestudyareaanddomimichighsinthecinnabargraincounts(Fig.8f).

Cu, Mo and Sb in Till 

Copperwasanalyzedonlyfortheclayfractionsamplesandrangesfrom33to408ppm(average=125±38ppm).Basedonthecumulativefrequencyplot,Cucontentsintheclayfractionareanomalousatthe90thpercentile(165ppm;Figure6a).AnomalousCucontentsoccurinthenorthwesterncornerofthestudyarea,withsmalleranomaliesinthenortheasternFigure8(next10pages):Proportionaldotmapsofselectedelementsandmineralsfor<0.25mmfractionoftillheavymineralseparatesforINAAgeochemicalanalysesalongwithselectedgraincounts.a)Goldgraincounts,b)Au,c)As,d)Sb,e)cinnabar,f)Hg,g)Ce,h)Th,i)Cr,andj)pyrite.SizeofdotsareproportionaltothecontentwithAu,Cinnabar,andpyritegrains,andAu,As,andThbeingrepresentedbylogplots.DataareoverlaidonthebedrockgeologymappresentedinFigure2.

GeoscienceBCReport2013‐1540

GeoscienceBCReport2013‐1541

GeoscienceBCReport2013‐1542

GeoscienceBCReport2013‐1543

GeoscienceBCReport2013‐1544

GeoscienceBCReport2013‐1545

GeoscienceBCReport2013‐1546

GeoscienceBCReport2013‐1547

GeoscienceBCReport2013‐1548

GeoscienceBCReport2013‐1549

GeoscienceBCReport2013‐1550

corner(Figure7g).ThereisapositiveconcentrationcorrelationbetweenCuandanumberofotheranalytessuchasFe(r=0.712),Sc(r=0.654),V(r=0.656),As(r=0.538),Au(r=0.410),Co(r=0.341)andMo(r=0.313).TheseelementassociationsindicatethatCuintheclayfractionofthetillinthenorthwesternandnortheasternpartsofthestudyareaisassociatedwithCu‐Aumineralization.Molybdenumwasanalyzedforbothsizefractions.AllclaysamplesreturnedMocontentsabovethedetectionlimit,rangingfrom0.3to12ppm(average=1.74±1.12ppm).Bycontrast,thesiltplusclay‐sizefractionhadonly137samplesabovedetectionlimit(1ppm),rangingfrom3to28ppm.Fortheclayfraction,theanomalousthresholdisaroundthe97thpercentile(3.5ppm;Figure6a),whereasforthesiltplusclay‐sizefraction,allsampleswithdetectableMocanbeconsideredanomalousatthe85thpercentile(≥3ppm;Figure6a).Thetwosizefractionsshowdifferentspatialrelationships.Fortheclayfraction,anomalousMocontentsoccurmainlyinthenortheasternsectionofthestudyarea;Mocontentsarenotanomalousinthenorthwesternsection(Figure7h).ThehighestMocontentisforasampleinthewest‐centralpartofthestudyarea.Bycontrast,thesiltplusclay‐sizefractionhasanomalousMocontentsscatteredovermuchofthestudyarea,withthemostconsistentlyelevatedcontentsintheeast‐centralandsouthernareas.Notably,Mocontentsinthesiltplusclay‐sizefractionarebelowdetectionforthenorthwesternareawherehighCu,AuandAsvaluesoccur.Antimonywasmeasuredforbothsizefractions,withclaycontentsrangingfrom0.1to5.6ppm(average=0.80±0.48ppm),andclay+siltcontentsrangingfrom0.5to13.1ppm(average=1.84±0.87ppm).Thresholdvaluesarearoundthe95thpercentileforbothfractions,at1.5and2.7ppmfortheclayandsiltplusclay‐sizefractions,respectively(Figure6a).Spatially,thetwosizefractionsshowsimilardistributions,withthemostanomalouscontentsoccurringinthenortheasternsectionofthestudyarea(Figure7i).AntimonyisalsoacommonpathfinderelementofporphyryCu‐AuandVMSmineralization.Antimonyintheheavymineralfractionrangesfrom1.2to26.3ppm,andisanomalousatthe90thpercentile(~7ppm)(Figure6a).ThetwohighestvaluesintheheavymineralfractionaretothesoutheastandnortheastofCarpLake,withintermediatevaluesinthenorthwest,thezoneofpotentialporphyryCu‐Austylemineralization.

Pb, Bi, Zn and Cd in Till 

Leadwasonlyanalyzedintheclayfraction,andrangesfrom6.6to64ppm(average=15.0±5.21ppm).Leadshowsanearnormaldistribution,althoughthereisasubtleinflectioninthecumulativefrequencyplotnearthe85thpercentile(Figure6a);settingthethresholdvalueatthe95thpercentilegivesanomalousPbat>24ppm.ThestrongestcorrelationswithPbareshownbyK(r=0.591),La(r=0.501),Bi(r=0.668),Th(r=0.720)andU(r=0.621).ThespatialdistributionofanomalousPbconcentrationsisdistinctfromtheothercommodity‐relatedelements,withthehighestPbcontentsinthenorth‐centralpartofthemaparea,betweenthenortheasternandnorthwesternareasthatareanomalousinAu,CuandAs(Figure7j).Bismuth(Figure7k)showsasimilarspatialdistributiontoPb,alongwithU,Th

GeoscienceBCReport2013‐1551

andtherareearthelements(REE).Bismuthrangesfromlessthandetection(0.1ppm)to2.7ppm(average=0.33±0.26ppm),withathresholdaroundthe95thpercentile(0.8ppm;Figure6b).ZncontentswereanalyzedinbothsizefractionsandCdwasonlyanalyzedintheclayfraction.Zinccontentsinclayrangefrom83to531ppm(average=187±41ppm)comparedto60to400ppmintheclay+silt(average=167±49ppm,witharound280samplesbelowdetection).CadmiumshowssimilarspatialdistributiontoZn,andrangesfrom0.1to4.0ppm(average=0.75±0.48ppm).Bothmetalsshowthelargestanomalies(thresholdatthe95thpercentile=245ppmZnforclay,250ppmZnforclay+siltand1.6ppmCdforclay;Figure6b)alongtheeasternsideofthemaparea(Figure7l,m),althoughCdalsoshowsseveralanomalousvaluesinthewest‐centralportionofthestudyarea.BothZnandCdhavestrongpositivecorrelationswithMo(r=0.743and0.586,respectively),As(r=0.421and0.364,respectively)andSb(r=0.464and0.334,respectively),aswellaswitheachother(r=0.719).AlthoughZncorrelatespoorlywithmajorelements,CdisstronglycorrelatedwithCa(r=0.595).

Rare Earth Elements, U, Th, K, Ca, Mg, Na, Cr, Hf, Co, Mn and Ni in Till 

BoththebasaltillgeochemicalresultsandtheINAAdeterminationsontheheavymineralfractionshowthatvaluesforrareearthelements(REE),U,Th,K,Ca,Mg,Na,Ni,andCr(onlyLa,ThandCrshowninFigure7asexamples)havespatialrelationshipsthatareconsistentwithchangesinthedominantunderlyingbedrocklithology(e.g.,Figures7n,o,p).Thus,incompatibleelementsthatareenrichedinfelsicrocks(i.e.,theREE,U,Th,KandHf)areelevatedinthenorthernpartofthestudyareacoincidentwiththeWolverinemetamorphiccomplex,whichcontainsfelsicrockssuchasgraniticpegmatite,granite,granodioriteandrhyolite(Struik,1994).InthelargeHMCsamplesfromthisareaofthemap,>33%oftheclaststhatare>2mmaregranitoid,indicatingagreaterprevalenceofalkalicvolcanicrocksandassociatedlatestageintrusiverocks.NickelandCrcontentsarehighestinthesouth‐southwestportionofthestudyareawheremaficandvolcaniclasticrocksoftheQuesnelTerraneoccur(Struik,1994).Conversely,whereasCoshowsastrongcorrelationwithMnintheclayfraction,CrandNi,whicharestronglyadsorbedbyMnoxidesandoxyhydroxides(NicholsonandEley,1997;Leybourneetal.,2003),showdistributionpatternsthatfollowthemajormaficvolcanicbedrockunitsinthesouthernpartofthestudyarea(Figure7p).HighTa,CeandThcontentsinthenorthtonortheastsuggestmorefelsicrocks,likelythegraniticpegmatite,granite,granodioriteandrhyoliteand/ormoreenrichedmaficrocks;whereashighCrcontentsinthesouthindicatesmoreprimitivemaficrocks(Figures7g,h,i,j).

Heavy Mineral Concentrates: visible gold, pyrite and cinnabar 

Alltillsamplesprocessedforheavyminerals(n=152)containvisiblegoldgrains.Thenumberofgoldgrainsper~10kgofsamplerangesfrom1to91(Figure8a)andthecalculatedAucontentsrangefrom1to23,491ppb.Intotal,1584goldgrainswereclassifiedonthebasisofsizeandmorphology.Goldgrainmorphologiesaresubdividedintothreegroups:pristine,modifiedandreshaped,basedontheclassificationschemeofDilabio(1990).Themajorityof

GeoscienceBCReport2013‐1552

goldgrainsinthisstudyareclassifiedasreshaped(82.5%),withlesscommonmodifiedgrains(14%)andrarepristinegrains(3.5%).Thethresholdvalueforthetotalnumberofgoldgrainsisaround12–15(80–85thpercentile),basedonchangesinslopeofaprobabilitydistribution.Althoughtheyareonlyestimates,graincountsofpyriteandcinnabarareuseful.Pyritecountsrangefromzerotoahighof~10000grains.Mostofthetillsampleswithelevatedpyritegraincounts(whereanomalousvaluesareapproximately>50grains)occurintheeasternandsouthernpartsofthestudyarea(Figure8b),distinctlysouthoftheareawithanomalousmetalvalues(northeasterncornerofthestudyarea;Figures7a–i,k–m).Bycontrast,cinnabarcountsrangefrom0to400,withanomalouscinnabargraincounts(approximately>60grains)inthewesternpartofthestudyarea,withatrendofdecreasingvaluestothesoutheast(Figure8c).

TILL GEOCHEMICAL EXPLORATION

Precious and base metal veins 

Inthenortheasternpartofthestudyarea,thereareanumberofAuandCu‐Aushowings,aswellastwosmallpast‐producingplacerdeposits(discussedpreviously).Historicgoldrecoveredfromtheplacerdepositswasdescribedaswirytoangular(MINFILE093J007),suggestingthattheplacergoldhadnotbeentransportedfarfromsource.Samplesoftheclayfractionwereanalyzedbyaqua‐regiadigestionfollowedbyICP‐MS,whereasthesiltplusclay‐sizefractionwasanalyzedbyINAA,thustheICP‐MSresultswillbelessbiasedbythenuggeteffect.Goldintheclayfractionoccurseitherasclay‐sizedgoldgrains,mostlikelyaresultofglacialcomminutionand/orsmall‐scalehydromorphicgolddispersionandadsorptiontoclayandoxyhydroxidemineralsurfacesintheclayfraction.Otherthanasmallnumber(~3)ofhighlyanomalousAuvaluesintheICP‐MSresults,thereisarelativelystrongcorrelation(r=0.410)betweenCuandAu;thissuggeststhatmuchoftheAuisassociatedwithCu‐sulphideminerals.Thepathfinderelementalassociationspresentedhere(i.e.,Sb,As,Se,Tl,Cd,Zn)areconsistentwiththisstyleofmineralization(Taylor,2007).Thisassociationiscoherentwithdescriptionsofmanyoftheshowingsinthenortheasternsectionofthestudyarea;showingsofquartzveinswithAu,Cu±Agand/orPGE(MINFILE093J007,093J012,093J027,093J037),likelyofepigeneticorigin.Themainclusteroftillsampleswithanomalousvaluesisessentiallyspatiallycoincidentwithmanyoftheshowings.Thedominanticeflowtowardsthenortheastcanbeusedasavectortoguidefurtherprospecting.

Porphyry Cu‐Au 

ThereispotentialforporphyryCu‐Au–stylemineralizationinthestudyareabasedonthepresenceoftheMountMilliganporphyryCu‐Audevelopedprospectincorrelativerockstothenorthwestofthestudyarea.ThetillgeochemicaldatashowselevatedvaluesofCuandAuandanumberofpathfinderelements(e.g.,As,Hg,Sb)inthenorthwesternpartofthestudyarea(Figures7a,b,c,d,f,g,i).Theseanomaloustillsamplesstronglyindicatesourcesofmineralizationup‐ice,towardsthesouthwest.ThereareanumberofCuandCu‐Aushowings

GeoscienceBCReport2013‐1553

coincidentandup‐iceofthisareaofelevatedgeochemicalvalues(Figure2).Forexample,attheTsilshowing(MINFILE094C180),inthenorthwesterncornerofthestudyarea,therearereportsofoutcropsofintermediatehornblendeandfeldsparporphyriticrocksexhibitingquartz‐carbonatealterationwithpyrite,pyrrhotiteandrarechalcopyriteveins.ThemainclusterofCuandAuanomaliesinthenorthwesternpartofthestudyareadirectlyoverliethemainclusterofCuandAushowingsinthisarea(Figure2).ThehighestheavymineralcontentscorrespondtotheareaidentifiedashavingpotentialporphyryCu‐Austylemineralization(cf.Wardetal.,2011).

Volcanogenic Massive Sulphide Deposits 

Volcanogenicmassivesulfideshowingsoccurtothesoutheastandtothenorthwestofthestudyareaalongthetrendofthemajorbedrockunits.Giventhepresenceextensivevolcanicrocks,thereshouldbesignificantpotentialforVMSmineralizationinthestudyarea,eventhoughtherearenoVMSshowingsordepositslistedinMINFILE.However,thisstudyindicatesthereisrelativelylittlespatialcorrelationbetweenthecommodityelementsassociatedwithVMSmineralization.LeadanomaliesareclearlydistinctfrombothCuandZn.TherelativelylowPbcontentsinthetillinthestudyarea,comparedtootherareasofVMSdeposits(cf.,Halletal.,2003;ParkhillandDoiron,2003),couldberelatedtothreefactors: GiventhepreponderanceofmaficvolcanicrocksinthispartofBC,VMSmineralization,if

present,wouldlikelybelead‐poorgiventhegenerallyjuvenilenatureofthesourceofthevolcanicrocks(Smithetal.,1995;PatchettandGehrels,1998;Dostaletal.,1999;Erdmeretal.,2002;Rossetal.,2005).Furthermore,VMSdepositsassociatedwithoceanfloorandoceanicarcsettingsarelead‐poorcomparedtothoseassociatedwithcontinentalmargins(Franklinetal.,1981;Galleyetal.,2007).

OnlytheclayfractionwasanalyzedforPb,byaqua‐regiadigestionfollowedbyICP‐MS,anditispossiblethatPbispresentinalesslabileformorinacoarsersizefraction.

ItispossiblethatthethicktillunitsofthestudyareahavedilutedthegeochemicalsignatureofunderlyingbedrocklithologiesresultinginsubduedanomaliesforPb.

DespiteanapparentlackofgeochemicalresponseforPbintillsamplesthereisstillpotentialforVMS‐stylemineralizationinthestudyarea.ThegenerallackofspatialcorrelationbetweenanomalousCuandZnmaysimplybeafunctionofVMS‐relatedCuanomaliesbeingmaskedbyanomaliesassociatedwithporphyryCu‐Auandpreciousandbasemetalveinmineralizationorbydilutionduetothicktill.ZincshowspoorcorrelationswithNi,CrandMgindicatingthatanomalousZncontentsinthetillarenotsimplyafunctionofweatheringofmaficvolcanicrocks.InadditiontoanomalousZnalongtheeasternportionofthestudyarea(Figure7l),therearecoincidentanomaliesforCd,BiandTl,suggestingthepotentialforconcealed,presentlyunrecognized,Znmineralization.TheHMCsampleswiththehighestpyritegraincountsarealsofromtheeast‐centralpartofthemaparea(Figure8b),furthersuggestingthepresenceofVMS‐stylemineralizationinthisarea.MoredetailedworkfollowingupthesourceofanomalouspyritegraincountsandZn,Cd,BiandTlcontentsinthetilliswarranted.

GeoscienceBCReport2013‐1554

Mercury 

PinchiLakemercurymine(MINFILE093K049)islocatedonthePinchifaultapproximately45kmtothenorthwestofthetwoHgoccurrencesinthesouthwesternportionofthestudyarea(Figure2).ThePinchiLakemineoperatedfrom1940to1944and1968to1975,andwasoneofonlytwomercury‐producingminesinCanada(Plouffe,1998).ThetwoHgshowingswithinthestudyareaareassociatedwiththeextensionofthePinchifault,butanomalouscinnabarcountsandHgcontentsintheclayfractionarenotspatiallyassociatedwiththeseshowings(Figures7f,5c).Elevatedcinnabargraincountsoccurtothenorthoftheshowings,suggestingadditionalsourcesoffault‐associatedHgmineralizationupicefromthecinnabargrains.ModeratelyelevatedHgintheclayfractionalsooccursintheareaofhighcinnabargraincounts.Follow‐upworkthatincludesananalysisofthesiltplusclay‐sizefractionusingananalyticalmethodwithlowerdetectionlimitsforHgiswarranted.

HEAVY MINERAL CONCENTRATE GEOCHEMISTRY TheINAAdeterminationsonheavymineralconcentratespresentedhereaddtothepreviouslypublisheddataandbegintobuildacoherentstoryonthepotentialformetallicmineralizationinthestudyarea.ThespatialdistributionofAu,AsandSbcontentsconfirmthepotentialforpreciousandbasemetalveinmineralizationandtoalesserextentporphyryCu‐Auinthenortheastandnorthwestareasofthestudyarea,respectively.Withgreaterthan30sampleshavingAucontentsgreaterthan400ppb,thereisthepotentialformineralizedbedrocktooccurthere.GoldanomaliescommonlycoincidewithanomaliesinotherpathfinderelementssuchasAsandSb.Althoughonlyalimitednumberofvaluesareabovedetectionlimit,thespatialdistributionsofHgvaluesintheheavymineralconcentratesdomimicthecinnabargraincounts.AreaswithelevatedINAAvaluesandgraincountsmaybeassociatedwithfaultssimilartothePinchiLakefault.ElevatedlightREEsandThinthenorthernpartofthestudyareaarecoincidentwith,andlocateddown‐icefrom,granitepegmatite,granite,andgranodioritesuggestingthepossibilityofREEmineralizationbeingassociatedwithfelsicporphyrybodiesinthearea.Ourpreviousstudiesontheclay+siltandclayfractionsofstudyareatillsandthepresenceoflargenumbersofpyrite/marcasitegrainsinsomeoftheHMCsamplessuggestpossibleVMSmineralization(Wardetal.,2011).However,theinherentlimitationsoftheINAAmethod(e.g.,lackofCuandPbdeterminationsandhighdetectionlimitsforZn,Cd,andAg)meanthatINAAdeterminationspresentedhereonheavymineralconcentratesdonotaddanyinsightintothepotentialforVMSstylemineralizationwithinthestudyarea.

CONCLUSIONS InpartoftheQUESTProjectarea,centralBC,approximately760tillsampleshavebeencollectedwherethickglacialdepositscoverbedrock,hinderingbothbedrockmappingandmineralexplorationprograms.ThestudyareaoccurswithintheQuesnelterrane,andisdominatedbymiddletoupperTriassicmaficvolcanicrocksandvolcaniclasticsedimentary

GeoscienceBCReport2013‐1555

rocksoftheNicolaGroup.TheMountMilliganCu‐Auporphyrydepositoccursjusttothenorthwestofthestudyareaincorrelativerocks,partofanearlinear,northwest‐trendingseriesofCu±Modepositsthatoccurwithinthisterrane.Tillgeochemicaldata(clayandclay+silt)andheavymineralgraincountdataandmetalcontentsofthe<0.25mmfraction,highlightfourareasthatwarrantfurtherwork:1) Inthenorthwesternpartofthestudyarea,thereisalargenumberoftillsampleswith

significantlyanomalousCuandAucontents(andcoincidentbutlesssignificantAsandAganomalies).TheunderlyingrocksarecorrelativewiththosethathosttheMountMilliganCu‐Auporphyrydeposit.ConsistentwiththepotentialforporphyryCu‐Austylemineralization,thereareanumberofshowingsassociatedwithalkalicvolcanicandporphyriticrocks.ThisareaalsohastillsampleselevatedinHf,REE,Th,Ti,FeandV,reflectingFe‐richalkalicigneousrocksintheunderlyingandup‐icebedrock.

2) Inthenortheasternpartofthestudyarea,thereareAu,Cu,As,Ag,SbandCdanomaliesintilloccurnearseveralpreciousandbasemetalveinshowingsandtwosmall‐scalepast‐producingAu(andPt)placermines.

3) Intheeast‐centralportionofthestudyarea,tillsampleshaveelevatedZn,CdandBicontents,aswellashighpyritegraincounts(upto10000grainsina10kgsample).TherearenoknownshowingsormineralizationinthispartofthestudyareabutthetillgeochemicalresultssuggeststhereispotentialforconcealedVMS‐typemineralization.

4) Inthewest‐centralportionandintothecentralportionofthestudyarea,Hgvaluesandelevatedcinnabargraincountssuggestthereisfault‐associatedHgmineralizationup‐ice(i.e.,tothesouthwest),perhapssimilartothePinchiLakemercuryminelocatedtothewestofthestudyarea.

Inthesefourareasincreasedtillsampledensitycouldprovidesomeinsightintocoveredbedrocklithologiesandthepotentialformetallicmineralization.Tillsamplingcanbecomemorechallenging,however,assampledensityincreasesappropriatesamplematerialcanbedifficulttofindandaccesstogoodsamplesitescanbelimited.Insuchcases,prospecting(includinganexaminationofclastsindrift)andtrenchingcouldbecarriedouttofurthertesttheseareas.

ACKNOWLEDGMENTS GeoscienceBCprovidedthemajorityoffundingforthisprojectandtheauthorsextendmanythankstoC.AnglinandC.Sluggettforhelpingtomakethisprojecthappen.TheMountainPineBeetle(MPB)ProgramunderthedirectionofC.Hutton(GSC,NaturalResourcesCanada)facilitatedbyAlainPLouffeprovidedfundingforaportionofthegeochemicalanalysesforsamplestakenin2008.AlainPlouffealsoarrangedforthearchivingofsamplesattheGSC.M.Casola,M.Dinsdale,K.Kennedy,V.Levson,J.McDonald,C.Pennimpede,S.Reichheld,I.SellersandD.Visprovidedableassistanceinthefield.AthoroughreviewbyT.Ferbeyhelpedtogreatlyimprovethemanuscript.

GeoscienceBCReport2013‐1556

REFERENCES Armstrong, J. E., Crandell, D. R., Easterbrook, D. J. andNoble, J. B. (1965): Late Pleistocene

stratigraphy and chronology in south‐western British Columbia and north‐westernWashington;GeologicalSocietyofAmericaBulletin,v.72,p.321‐330.

Averill, S. A. (2001): The application of heavy indicatormineralogy inmineral explorationwithemphasisonbasemetal indicatorsinglaciatedmetamorphicandplutonicterrains.GeologicalSocietySpecialPublicationsv.185,p.69‐81.

BCGeologicalSurvey(2010):MINFILEBCmineraldepositsdatabase;BCMinistryofForest,MinesandLands,URL<http://minfile.ca/>[August2010].

Bobrowsky,P.T.,Rutter,N.W.(1992):TheQuaternarygeologichistoryoftheCanadianRockyMountains.GeographiephysicetQuaternairev.46,p.5–50.

Clague, J.J. (1989):Chapter1:Quaternarygeologyof theCanadianCordillera; inQuaternaryGeologyofCanadaandGreenland,R.J.Fulton(ed.),GeologyofCanadaSeriesNo.1.,p.17‐96.

Clague J.J., Ward B.C. (2011): Pleistocene glaciation of British Columbia. In Quaternaryglaciations–extentandchronology,acloserlook,EhlersJ,GibbardPL,HughesPD(eds),DevelopmentsinQuaternaryScience15:563–573.

Dreimanis,A.,(1989):Tills:theirgeneticterminologyandclassification.In:Goldthwait,R.P.and Matsch, C. L. Eds.)Genetic Classification of Glacigenic Deposits. A.A. Balkema,Rotterdam.

Dilabio,R.N.W.(1990):Classificationandinterpretationoftheshapesandsurfacetexturesofgoldgrainsfromtill;inCurrentResearch,PartC,GeologicalSurveyofCanada,Paper90‐1C,p.323–329.

Dostal,J.,Gale,V.andChurch,B.N.(1999):UpperTriassicTaklaGroupvolcanicrocks,StikineTerrane,north‐centralBritishColumbia:geochemistry,petrogenesis,andtectonicimplications;CanadianJournalofEarthSciences,v.36,p.1483–1494.

Dreimanis,A.(1989):Tills:theirgeneticterminologyandclassification;inGeneticClassificationofGlacigenicDeposits,R.P.GoldthwaitandC.L.Matsch(ed.),A.A.Balkema,Rotterdam,p.17–83.

Erdmer,P.,Moore,J.M.,Heaman,L.,Thompson,R.I.,Daughtry,K.L.andCreaser,R.A.(2002):ExtendingtheancientmarginoutboardintheCanadianCordillera:recordofProterozoiccrustandPaleoceneregionalmetamorphismintheNicolahorst,southernBritishColumbia;CanadianJournalofEarthSciences,v.39,p.1605–1623.

Ferbey,T.LevsonandV.M.(2010):EvidenceofWestwardGlacialDispersalAlongaTillGeochemicalTransectoftheCopperStarCu+/‐Mo+/‐AuOccurrence,West‐centralBritishColumbia;BCMinistryofEnergyandMinesOpenFile2010‐04

Ferbey,T.Levson,V.M.andLett,R.E.(2012):TillGeochemistryoftheHuckleberryMineArea,West‐CentralBritishColumbia(NTS093E/11);BCMinistryofEnergyandMinesOpenFile2012‐02

GeoscienceBCReport2013‐1557

Franklin,J.M.,Lydon,J.W.andSangster,D.F.(1981):Volcanic‐associatedmasivesulfidedeposits;EconomicGeology,75thAnniversary,p.485–627.

Galley,A.G.,Hannington,M.andJonasson,I.(2007):Volcanogenicmassivesulfidedeposits;inMineralDepositsofCanada:ASynthesisofMajorDeposit‐Types,DistrictMetallogeny,theEvolutionofGeologicalProvinces,andExplorationMethods,W.D.Goodfellow(ed.),GeologicalAssociationofCanada,SpecialPublicationno.5,p.141–161.

Hall,G.E.M.,Parkhill,M.A.andBonham‐Carter,G.F. (2003):Conventionalandselective leachgeochemical exploration methods applied to humus and B horizon soil overlying theRestigouche VMS deposit, BathurstMining Camp, NewBrunswick; in Massive SulphideDeposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine,W.D.Goodfellow,S.R.McCutcheonandJ.M.Peter(ed.),EconomicGeologyMonograph11,p.763–782.

Hoffman,E.L.(1992):Instrumentalneutron‐activationingeoanalysis;JournalofGeochemicalExploration,v.44,p.297–319.

Holland,S.S.,(1976):LandformsofBritishColumbia–aphysiographicoutline;BritishColumbiaMinistryofEnergy,MinesandPetroleumResources,Bulletin48,p.138.

JacksonJr.,L.E.,Clague,J.J.(Eds.),(1991):TheCordilleranIceSheet,In:GeographiephysiqueetQuaternaire.45,261–377.

LeFort,Darren;Hanley,Jacob;Guillong,Marcel.(2011):SubepithermalAu‐PdmineralizationassociatedwithanalkalicporphyryCu‐Audeposit,MountMilligan,QuesnelTerrane,BritishColumbia,Canada.EconomicGeologyandtheBulletinoftheSocietyofEconomicGeologistsv.106,p.781‐808.

Levson, V.M. (2001): Regional till geochemical surveys in the Canadian Cordillera: samplemedia, methods and anomaly evaluation; in Drift Exploration in Glaciated Terrain;McClenaghan, M.B, Bobrowsky, P.T., Hall, G.E.M. and Cook, S.J., Editors, The GeologicalSociety,SpecialPublicationNo.185,p.45‐68.

Levson,V.M.andGiles,T.R. (1997):Quaternarygeologyandtillgeochemistrystudies in theNechako and Fraser Plateaus, central British Columbia in Interior Plateau GeoscienceProject: Summary of Geological, Geochemical and Geophysical Studies; Diakow, L.J.,Metcalfe,P. andNewell J.,Editors,BritishColumbiaGeologicalSurvey,Paper1997‐2,p.121‐145.

Leybourne,M.I.,Boyle,D.R.andGoodfellow,W.D.(2003):Interpretationofstreamwaterandsediment geochemistry in the Bathurst Mining Camp, New Brunswick: applications tomineral exploration; in Massive Sulphide Deposits of the Bathurst Mining Camp, NewBrunswick, andNorthernMaine,W.D.Goodfellow, S.R.McCutcheon and J.M.Peter (ed.),EconomicGeologyMonograph11,p.741–761.

Logan, J. M., Schiarizza, P., Struik, L. C., Barnett, C., Nelson, J. L., Kowalczyk, P., Ferri, F.,Mihalynuk,M.G.,Thomas,M.D.,Gammon,P.,Lett,R.,Jackaman,W.,andFerbey,T.(2010):BedrockGeologyoftheQUESTmaparea,centralBritishColumbia;.GeoscienceBCReport

GeoscienceBCReport2013‐1558

2010‐5,BritishColumbiaGeologicalSurveyGeoscienceMap2010‐1andGeologicalSurveyofCanadaOpenFile6476.

Mathews,W.H.(1986):PhysiographicmapoftheCanadianCordillera;GeologicalSurveyofCanada,“A”SeriesMap1710A,scale1:5000000.

McClenaghan,M.B.(2005):Indicatormineralmethodsinmineralexploration;Geochemistry:Exploration,Environment,Analysis,v.5,p.233–245.

McClenaghan,M.B.,Ward,B.C.,Kjarsgaard, I.M.,Kjarsgaard,B.A.,Kerr,D.E. andDredge, L.A.(2002): Indicator mineral and till geochemical dispersal patterns associated with theRanch Lake kimberlite, Lac de Gras region, NWT, Canada; Geochemistry: Exploration,Environment,Analysis,v.2,p.299–320.

Nicholson,K., andEley,M. (1997):Geochemistry ofmanganeseoxides;metal adsorption infreshwater andmarine environments. Geological Society Special Publications v. 119, p.309‐326.

Parkhill,M.A. andDoiron, A. (2003):Quaternary geology of theBathurstMining Camp andimplications for base metal exploration using drift prospecting; in Massive SulphideDeposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine,W.D.Goodfellow,S.R.McCutcheonandJ.M.Peter(ed.),EconomicGeologyMonograph11.

Patchett,P.J.andGehrels,G.E.(1998):ContinentalinfluenceonCanadianCordilleranterranesfromNdisotopicstudy,andsignificanceforcrustalgrowthprocesses;JournalofGeology,v.106,p.269–280.

Paulen,R.C.andBobrowsky,P.T.(2003):MultiphaseflowofLateWisconsiniceintheQuesnelHighlands:piecingtogetherdiscordanticeflowindicators.Programwithabstracts,vol.28,p.132,2003GAC‐MAC‐SEG,Vancouver.

Plouffe, A. (1997): Ice flow and late glacial lakes of the Fraser Glaciation, central BritishColumbia;inCurrentResearch1997‐A,GeologicalSurveyofCanada,p133‐143.

Plouffe,A.(2000):QuaternarygeologyoftheFortFraserandMansonRivermapareas,centralBritishColumbiaGeologicalSurveyofCanada,Bulletin554,p.62.

Ross,G.M.,Patchett,P.J.,Hamilton,M.,Heaman,L.,Decelles,P.G.,Rosenberg,E.andGiovanni,M.K.(2005):EvolutionoftheCordilleranorogen(southwesternAlberta,Canada)inferredfromdetritalmineralgeochronology,geochemistry,andNdisotopesintheforelandbasin;GeologicalSocietyofAmericaBulletin,v.117,p.747–763.

Sacco,D.A.,Ward,B.C.,Maynard,D.,Geertsema,M.andReichheld,S.(2010):Terrainmapping,glacial history and drift prospecting in the northwest corner ofMcleod Lakemap area(part of NTS 093J), central British Columbia; in Geoscience BC Summary of Activities2009,GeoscienceBC,Report2010‐1,p.33‐42.

SanderGeophysicsLimited(2008):Airbornegravitysurvey,QuesnelliaRegion,BritishColumbia;GeoscienceBC,Report2008‐08,121p.

Smith,A.D.,Brandon,A.D.andLambert,R.S.(1995):Nd‐SrisotopesystematicsofNicolaGroupvolcanicrocks,Quesnelterrane;CanadianJournalofEarthSciences,v.32,p.437–446.

GeoscienceBCReport2013‐1559

Struik, L.C. (1994): Geology of theMcleod Lakemap area (93J), British Columbia; GeologicSurveyofCanada,Report:2439,18pp.

Taylor BE (2007) Epithermal gold deposits In: GoodfellowWD (ed) Mineral Resources ofCanada: A Synthesis of Major Deposit‐types, District Metallogeny, the Evolution ofGeologicalProvinces,andExplorationMethods.pp113‐139.

Tipper, H.W. (1971): Glacial geomorphology and Pleistocene history of central BritishColumbia;GeologicSurveyofCanada,Bulletin196,89p.

Ward,B.C.,Geertsema,M.,Telka,A.,andMathewes,R.W.(2008):Apaleoecologicalrecordofclimatic deterioration frommiddle to lateWisconsinan time on the Interior Plateau ofBritish Columbia, Canada. 33rd International Geological Congress, August 6–14, 2008,Oslo,Norway.

Ward,B.,Maynard,D.,Geertsema,M.andRabb,T.(2009):Ice‐flowhistory,driftthicknessanddriftprospectingforaportionoftheQUESTProjectarea,centralBritishColumbia(NTS093G,H[westhalf],J);inGeoscienceBCSummaryofActivities2008,GeoscienceBC,Report2009‐1,p.25–32.

Ward,B.C.,Leybourne,M.I.andSacco,D.A.(2011):DriftprospectingwithintheQUESTprojectarea(NTS093J):MineralpotentialforporphyryCu‐Au,VMS,andAu‐CuVeins;inGeoscienceBCSummaryofActivities2011,GeoscienceBC,Report2011‐1,p.73‐96.

Ward,B.C.,Leybourne,M.I.andSacco,D.A.(2012):HeavymineralanalysisfromtillsampleswithintheQUESTProjectArea,centralBritishColumbia(NTS093J);inGeoscienceBCSummaryofActivities2012,GeoscienceBC,Report2012‐1,p69‐78.