Dynamical Systems Analysis III: Phase Portraits By Peter Woolf (pwoolf@umich.edu) University of...

Post on 20-Dec-2015

217 views 1 download

Tags:

transcript

Dynamical Systems Analysis III:Phase Portraits

By Peter Woolf (pwoolf@umich.edu)University of Michigan

Michigan Chemical Process Dynamics and Controls Open Textbook

version 1.0

Creative commons

Questions answered & questions remaining..

1) Create model of physical process and controllers2) Find fixed points3) Linearize your model around these fixed points4) Evaluate the stability around these fixed points

Questions:

• What about all of the other points? What happens when we are not at a fixed point?

• If there are multiple stable fixed points, how large are their ‘basins of attraction’?

• Is there a way to visualize this?• Is there a way to automatically do all of this?

dA

dt= 3A − A2 − AB

dB

dt= 2B − AB − 2B2

Nonlinear model

From last class…Linear approximation at A=0, B=0

′ A

′ B

⎣ ⎢

⎦ ⎥=

3 0

0 2

⎣ ⎢

⎦ ⎥A

B

⎣ ⎢

⎦ ⎥+

0

0

⎣ ⎢

⎦ ⎥

Linear approximation at A=0, B=1

′ A

′ B

⎣ ⎢

⎦ ⎥=

2 0

−1 −2

⎣ ⎢

⎦ ⎥A

B

⎣ ⎢

⎦ ⎥+

0

2

⎣ ⎢

⎦ ⎥

Linear approximation at A=3, B=0

′ A

′ B

⎣ ⎢

⎦ ⎥=

−3 −3

0 −1

⎣ ⎢

⎦ ⎥A

B

⎣ ⎢

⎦ ⎥+

9

0

⎣ ⎢

⎦ ⎥

Linear approximation at A=4, B=-1

′ A

′ B

⎣ ⎢

⎦ ⎥=

−4 −4

1 2

⎣ ⎢

⎦ ⎥A

B

⎣ ⎢

⎦ ⎥+

12

−2

⎣ ⎢

⎦ ⎥

unstable

unstablesaddle

stable

unstablesaddle

Linear approximation at A=0, B=0

′ A

′ B

⎣ ⎢

⎦ ⎥=

3 0

0 2

⎣ ⎢

⎦ ⎥A

B

⎣ ⎢

⎦ ⎥+

0

0

⎣ ⎢

⎦ ⎥

Linear approximation at A=0, B=1

′ A

′ B

⎣ ⎢

⎦ ⎥=

2 0

−1 −2

⎣ ⎢

⎦ ⎥A

B

⎣ ⎢

⎦ ⎥+

0

2

⎣ ⎢

⎦ ⎥

Linear approximation at A=3, B=0

′ A

′ B

⎣ ⎢

⎦ ⎥=

−3 −3

0 −1

⎣ ⎢

⎦ ⎥A

B

⎣ ⎢

⎦ ⎥+

9

0

⎣ ⎢

⎦ ⎥

Linear approximation at A=4, B=-1

′ A

′ B

⎣ ⎢

⎦ ⎥=

−4 −4

1 2

⎣ ⎢

⎦ ⎥A

B

⎣ ⎢

⎦ ⎥+

12

−2

⎣ ⎢

⎦ ⎥

unstable

unstablesaddle

stable

unstablesaddle

A

B ?

What happens at A=3, B=1

A

B ?

(Not steady state)Check derivatives of nonlinear model

dA

dt= 3A − A2 − AB

dB

dt= 2B − AB − 2B2

dA

dt= 3(3) − (3)2 − (3)(1) = −3

dB

dt= 2(1) − (3)(1) − 2(1)2 = −3

A

B

Trajectories

A

time

B

time

3

2

1

0

Phase Portrait

Fixed points

Vector field

Trajectory

Stable and unstable orbits

I: converge to fixed point

II: diverge

III: diverge

IV: diverge

Other possibilities

dx

dt= 2x − y + 3(x 2 − y 2) + 2xy

dx

dt= x − 3y − 3(x 2 − y 2) + 2xy

Another nonlinear system(Default example in PPLANE)

stable

unstable

Basin of attraction I

Basin of attraction II.1 Basin of

attraction II.2

Other possibilities

du

dt= u −

1

3u3 − w − 2

dw

dt= 0.1 1.5 + 2u − w( )

Another nonlinear system(FitzHugh-Nagumo model)

Limit cycle

unstable

Region I

Region II

Note: Locally unstable systems can be globally stable!

Other possibilities

dx

dt=10 x − y( )

dy

dt= 28x − y − xz

dz

dt= xy − 2.6667z

Another nonlinear system(Lorenz equations)

Chaotic system:3+ dimensionsNever converges to a point or cycle

Image from java app at http://www.geom.uiuc.edu/java/Lorenz/

Unstable fixed point

Other possibilities

dx

dt=10 x − y( )

dy

dt= 28x − y − xz

dz

dt= xy − 2.6667z

Image from java app at http://www.falstad.com/vector3d/

Unstable fixed point

(Same system shown in 3D with white balls following the trajectories)

Concepts from phase portraits extend to higher dimensions

• Fixed points, trajectories, limit cycles, chaos, basins of attraction

• Many real chemical engineering systems are high dimensional and very nonlinear.

dCA

dt=

F

VCAf − CA( ) − k1Exp

−ΔE1

RT

⎡ ⎣ ⎢

⎤ ⎦ ⎥CA

2

dCB

dt=

F

V0 − CB( ) + k1Exp

−ΔE1

RT

⎡ ⎣ ⎢

⎤ ⎦ ⎥CA

2 − k2Exp−ΔE2

RT

⎡ ⎣ ⎢

⎤ ⎦ ⎥CBCA

dCC

dt=

F

V0 − CB( ) + k2Exp

−ΔE2

RT

⎡ ⎣ ⎢

⎤ ⎦ ⎥CBCA

dT

dt=

F

VTf − T( ) +

−ΔH1

ρc p

⎣ ⎢

⎦ ⎥k1Exp

−ΔE1

RT

⎡ ⎣ ⎢

⎤ ⎦ ⎥CA

2 +−ΔH2

ρc p

⎣ ⎢

⎦ ⎥k2Exp

−ΔE2

RT

⎡ ⎣ ⎢

⎤ ⎦ ⎥CBCA −

UA

Vρc p

T − Tj( )

dTj

dt=

F j

V j

Tjin − Tj( ) +UA

V jρc p

T − Tj( )

Example: CSTR with cooling jacket, multiple reactions, and one PID controller

dF j

dt= F jss + Kc T − Tset( ) +

1

τ I

xI + τ D

d(T − Tset )

dt

dxI

dt= T − Tset

What does this have to do with controls?

• Control systems modify the dynamics of your process to:– Move fixed points to desirable places– Make unstable points stable– Modify boundaries between basins– Enlarge basins of attraction

–Move fixed points to desirable places–Make unstable points stable–Modify boundaries between basins–Enlarge basins of attraction

How can a control system change the dynamics?

• Adding new relationships between variables

• Adding new variables (I in PID control)

• Adding or countering nonlinearity

• Providing external information

Take Home Messages

• Phase portraits allow you to visualize the behavior of a dynamic system

• Control actions can be interpreted in the context of a phase portrait

• Local stability analysis works locally but can’t always be extrapolated for a nonlinear system.