ECE 802-604: Nanoelectronics

Post on 06-Jan-2016

24 views 0 download

description

ECE 802-604: Nanoelectronics. Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu. Lecture 20, 05 Nov 13. Carbon Nanotubes and Graphene Carbon nanotube/Graphene physical structure - PowerPoint PPT Presentation

transcript

ECE 802-604:Nanoelectronics

Prof. Virginia AyresElectrical & Computer EngineeringMichigan State Universityayresv@msu.edu

VM Ayres, ECE802-604, F13

Lecture 20, 05 Nov 13

Carbon Nanotubes and Graphene

Carbon nanotube/Graphene physical structure

Carbon bond hybridization is versatile : sp1 (Lec19), sp2, and sp3 (HW05)

More motivation for bond hybridization

CNT/Graphene electronic propertiessp2: origin of CNT/Graphene mechanical and electronic

structuressp2: electronic structure

R. Saito, G. Dresselhaus and M.S. DresselhausPhysical Properties of Carbon Nanotubes

A. Beiser, Modern Physics

E. Anderson, Quantum Mechanics

VM Ayres, ECE802-604, F13

sp1 hybridization– Use orthonormality

sp2 hybridization:– Get help from directions– Use orthonormality

VM Ayres, ECE802-604, F13

sp2 hybridization:

1

VM Ayres, ECE802-604, F13

sp2 hybridization:

1

Example: how many valence (bonding) electrons do you get in:sp1 hybridization?sp2 hybridization?

VM Ayres, ECE802-604, F13

sp2 hybridization:

Answer:

sp = sp1 hybridization:2e- per C: linear bonding

sp2 hybridization:3e- per C: trigonal bonding

sp sp spsp

sp2

sp2

sp2

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

sp2 hybridization:

VM Ayres, ECE802-604, F13

Lecture 20, 05 Nov 13

Carbon Nanotubes and Graphene

Carbon nanotube/Graphene physical structure

Carbon bond hybridization is versatile : sp1 (Lec19), sp2, and sp3 (HW05)

More motivation for bond hybridization

CNT/Graphene electronic propertiessp2: origin of CNT/Graphene mechanical and electronic

structuressp2: electronic structure

R. Saito, G. Dresselhaus and M.S. DresselhausPhysical Properties of Carbon Nanotubes

A. Beiser, Modern Physics

E. Anderson, Quantum Mechanics

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

F

Expect: 180ºGet: 180º

VM Ayres, ECE802-604, F13

O H

H

Expect: 90ºGet: 104.5º“Explanation”:Mutual repulsion of the H atoms“Plausible”:H2S, H2Se = 92º, 90ºGreater separation of H around larger S and Se atoms

VM Ayres, ECE802-604, F13

N H

H

HExpect: 90º pyramidGet: 107.5º pyramid“Explanation”:Mutual repulsion of the H atoms“Plausible”:H3P, H3As = 92º, 90ºGreater separation of H around larger P and As atoms

VM Ayres, ECE802-604, F13

C H

H

Expect: 90º CH2, like H2O

VM Ayres, ECE802-604, F13

C H

H

Expect: 90º CH2, like H2OGet: CH4 tetrahedronCH4 is impossible in this p-orbital picture.

VM Ayres, ECE802-604, F13

sp3 Hybrid orbital picture

VM Ayres, ECE802-604, F13

Lecture 20, 05 Nov 13

Carbon Nanotubes and Graphene

Carbon nanotube/Graphene physical structure

Carbon bond hybridization is versatile : sp1 (Lec19), sp2, and sp3 (HW05)

More motivation for bond hybridization

CNT/Graphene electronic propertiessp2: origin of CNT/Graphene mechanical and electronic

structuressp2: electronic structure

R. Saito, G. Dresselhaus and M.S. DresselhausPhysical Properties of Carbon Nanotubes

A. Beiser, Modern Physics

E. Anderson, Quantum Mechanics

VM Ayres, ECE802-604, F13

sp3:

Diamond

methane

alkane

VM Ayres, ECE802-604, F13

sp2:

Benzene

Graphene

CNT (curvature)

fullerene (curvature)

Polyacetylene: non-trigonal: linear

VM Ayres, ECE802-604, F13

Division of structural and electronic properties in linear sp1 that makes both effective:

VM Ayres, ECE802-604, F13

Diamond sp3: no division. Great structural strength but wide bandgap electronic properties

VM Ayres, ECE802-604, F13

Division of structural and electronic properties in trigonal sp2 makes both effective:

All

Electronic:-bonds

Structure:-bonds

VM Ayres, ECE802-604, F13

Electronic:-bonds

Structure:-bonds

Electronic:Delocalized e-

*-conduction band e-ECE, PHY-anti-bonding e-CHM

-valence band e-ECE, PHY-bonding e-CHM

VM Ayres, ECE802-604, F13

Electronic:-bonds

Structure:-bonds

Electronic:Delocalized e-

*-conduction band e-ECE, PHY-anti-bonding e-CHM

-valence band e-ECE, PHY-bonding e-CHM

VM Ayres, ECE802-604, F13

Lecture 20, 05 Nov 13

Carbon Nanotubes and Graphene

Carbon nanotube/Graphene physical structure

Carbon bond hybridization is versatile : sp1 (Lec19), sp2, and sp3 (HW05)

More motivation for bond hybridization

CNT/Graphene electronic propertiessp2: origin of CNT/Graphene mechanical and electronic

structuressp2: electronic structure:

1st: polyacetylene2nd:graphene:

R. Saito, G. Dresselhaus and M.S. DresselhausPhysical Properties of Carbon Nanotubes

A. Beiser, Modern Physics

E. Anderson, Quantum Mechanics

VM Ayres, ECE802-604, F13

Game plan:

E

VM Ayres, ECE802-604, F13

Rules for finding the electronic structure (p. 21):

2

1

3

4

Find Unit cell “a”

Find k:

Find H and S elements

Solve for E(k)

Det [H – SI] =0

VM Ayres, ECE802-604, F13

Question:We’ve been doing E(k) versus k diagrams since Datta Chp01. Why all this now? What happened to conservation of Energy as the starting point? What has changed?

VM Ayres, ECE802-604, F13

Question:We’ve been doing E(k) versus k diagrams since Datta Chp01. Why all this now? What happened to conservation of Energy as the starting point? What has changed?

Answer:Dresselhaus uses correct Bloch wave functions to describe the electrons. Datta uses travelling waves. This is discussed in Datta page 11. Therefore we must include the symmetry of the polyacetlyene, graphene, etc. lattice in our wave functions. That’s what finding the reciprocal space k is about.